@@ -20,50 +20,36 @@ def fill_direction(df: pd.DataFrame, **kwargs) -> pd.DataFrame:
20
20
and `downup`.
21
21
22
22
23
- Functional usage syntax:
24
-
25
- ```python
26
- import pandas as pd
27
- import janitor as jn
28
-
29
- df = pd.DataFrame(...)
30
- df = jn.fill_direction(
31
- df = df,
32
- column_1 = direction_1,
33
- column_2 = direction_2,
34
- )
35
- ```
36
-
37
- Method-chaining usage syntax:
38
-
39
- >>> import pandas as pd
40
- >>> import janitor as jn
41
- >>> df = pd.DataFrame(
42
- ... {
43
- ... 'col1': [1, 2, 3, 4],
44
- ... 'col2': [None, 5, 6, 7],
45
- ... 'col3': [8, 9, 10, None],
46
- ... 'col4': [None, None, 11, None],
47
- ... 'col5': [None, 12, 13, None]
48
- ... }
49
- ... )
50
- >>> df
51
- col1 col2 col3 col4 col5
52
- 0 1 NaN 8.0 NaN NaN
53
- 1 2 5.0 9.0 NaN 12.0
54
- 2 3 6.0 10.0 11.0 13.0
55
- 3 4 7.0 NaN NaN NaN
56
- >>> df.fill_direction(
57
- ... col2 = 'up',
58
- ... col3 = 'down',
59
- ... col4 = 'downup',
60
- ... col5 = 'updown'
61
- ... )
62
- col1 col2 col3 col4 col5
63
- 0 1 5.0 8.0 11.0 12.0
64
- 1 2 5.0 9.0 11.0 12.0
65
- 2 3 6.0 10.0 11.0 13.0
66
- 3 4 7.0 10.0 11.0 13.0
23
+ Example:
24
+
25
+ >>> import pandas as pd
26
+ >>> import janitor as jn
27
+ >>> df = pd.DataFrame(
28
+ ... {
29
+ ... 'col1': [1, 2, 3, 4],
30
+ ... 'col2': [None, 5, 6, 7],
31
+ ... 'col3': [8, 9, 10, None],
32
+ ... 'col4': [None, None, 11, None],
33
+ ... 'col5': [None, 12, 13, None]
34
+ ... }
35
+ ... )
36
+ >>> df
37
+ col1 col2 col3 col4 col5
38
+ 0 1 NaN 8.0 NaN NaN
39
+ 1 2 5.0 9.0 NaN 12.0
40
+ 2 3 6.0 10.0 11.0 13.0
41
+ 3 4 7.0 NaN NaN NaN
42
+ >>> df.fill_direction(
43
+ ... col2 = 'up',
44
+ ... col3 = 'down',
45
+ ... col4 = 'downup',
46
+ ... col5 = 'updown'
47
+ ... )
48
+ col1 col2 col3 col4 col5
49
+ 0 1 5.0 8.0 11.0 12.0
50
+ 1 2 5.0 9.0 11.0 12.0
51
+ 2 3 6.0 10.0 11.0 13.0
52
+ 3 4 7.0 10.0 11.0 13.0
67
53
68
54
:param df: A pandas DataFrame.
69
55
:param kwargs: Key - value pairs of columns and directions.
@@ -138,39 +124,32 @@ def fill_empty(
138
124
139
125
This method mutates the original DataFrame.
140
126
141
- Functional usage syntax:
142
-
143
- ```python
144
- df = fill_empty(df, column_names=[col1, col2], value=0)
145
- ```
146
-
147
- Method chaining syntax:
148
-
149
-
150
- >>> import pandas as pd
151
- >>> import janitor
152
- >>> df = pd.DataFrame(
153
- ... {
154
- ... 'col1': [1, 2, 3],
155
- ... 'col2': [None, 4, None ],
156
- ... 'col3': [None, 5, 6]
157
- ... }
158
- ... )
159
- >>> df
160
- col1 col2 col3
161
- 0 1 NaN NaN
162
- 1 2 4.0 5.0
163
- 2 3 NaN 6.0
164
- >>> df.fill_empty(column_names = 'col2', value = 0)
165
- col1 col2 col3
166
- 0 1 0.0 NaN
167
- 1 2 4.0 5.0
168
- 2 3 0.0 6.0
169
- >>> df.fill_empty(column_names = ['col2', 'col3'], value = 0)
170
- col1 col2 col3
171
- 0 1 0.0 0.0
172
- 1 2 4.0 5.0
173
- 2 3 0.0 6.0
127
+ Example:
128
+
129
+ >>> import pandas as pd
130
+ >>> import janitor
131
+ >>> df = pd.DataFrame(
132
+ ... {
133
+ ... 'col1': [1, 2, 3],
134
+ ... 'col2': [None, 4, None ],
135
+ ... 'col3': [None, 5, 6]
136
+ ... }
137
+ ... )
138
+ >>> df
139
+ col1 col2 col3
140
+ 0 1 NaN NaN
141
+ 1 2 4.0 5.0
142
+ 2 3 NaN 6.0
143
+ >>> df.fill_empty(column_names = 'col2', value = 0)
144
+ col1 col2 col3
145
+ 0 1 0.0 NaN
146
+ 1 2 4.0 5.0
147
+ 2 3 0.0 6.0
148
+ >>> df.fill_empty(column_names = ['col2', 'col3'], value = 0)
149
+ col1 col2 col3
150
+ 0 1 0.0 0.0
151
+ 1 2 4.0 5.0
152
+ 2 3 0.0 6.0
174
153
175
154
176
155
:param df: A pandas DataFrame.
0 commit comments