|
3 | 3 | # Copyright (c) 2020 Claudiu Popa <[email protected]>
|
4 | 4 | # Copyright (c) 2021 Pierre Sassoulas <[email protected]>
|
5 | 5 | # Copyright (c) 2021 Marc Mueller <[email protected]>
|
6 |
| - |
7 |
| -# Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html |
8 |
| -# For details: https://github.com/PyCQA/astroid/blob/main/LICENSE |
9 |
| - |
10 |
| - |
11 |
| -"""Astroid hooks for scipy.signal module.""" |
12 |
| -from astroid.brain.helpers import register_module_extender |
13 |
| -from astroid.builder import parse |
14 |
| -from astroid.manager import AstroidManager |
15 |
| - |
16 |
| - |
17 |
| -def scipy_signal(): |
18 |
| - return parse( |
19 |
| - """ |
20 |
| - # different functions defined in scipy.signals |
21 |
| -
|
22 |
| - def barthann(M, sym=True): |
23 |
| - return numpy.ndarray([0]) |
24 |
| -
|
25 |
| - def bartlett(M, sym=True): |
26 |
| - return numpy.ndarray([0]) |
27 |
| -
|
28 |
| - def blackman(M, sym=True): |
29 |
| - return numpy.ndarray([0]) |
30 |
| -
|
31 |
| - def blackmanharris(M, sym=True): |
32 |
| - return numpy.ndarray([0]) |
33 |
| -
|
34 |
| - def bohman(M, sym=True): |
35 |
| - return numpy.ndarray([0]) |
36 |
| -
|
37 |
| - def boxcar(M, sym=True): |
38 |
| - return numpy.ndarray([0]) |
39 |
| -
|
40 |
| - def chebwin(M, at, sym=True): |
41 |
| - return numpy.ndarray([0]) |
42 |
| -
|
43 |
| - def cosine(M, sym=True): |
44 |
| - return numpy.ndarray([0]) |
45 |
| -
|
46 |
| - def exponential(M, center=None, tau=1.0, sym=True): |
47 |
| - return numpy.ndarray([0]) |
48 |
| -
|
49 |
| - def flattop(M, sym=True): |
50 |
| - return numpy.ndarray([0]) |
51 |
| -
|
52 |
| - def gaussian(M, std, sym=True): |
53 |
| - return numpy.ndarray([0]) |
54 |
| -
|
55 |
| - def general_gaussian(M, p, sig, sym=True): |
56 |
| - return numpy.ndarray([0]) |
57 |
| -
|
58 |
| - def hamming(M, sym=True): |
59 |
| - return numpy.ndarray([0]) |
60 |
| -
|
61 |
| - def hann(M, sym=True): |
62 |
| - return numpy.ndarray([0]) |
63 |
| -
|
64 |
| - def hanning(M, sym=True): |
65 |
| - return numpy.ndarray([0]) |
66 |
| -
|
67 |
| - def impulse2(system, X0=None, T=None, N=None, **kwargs): |
68 |
| - return numpy.ndarray([0]), numpy.ndarray([0]) |
69 |
| -
|
70 |
| - def kaiser(M, beta, sym=True): |
71 |
| - return numpy.ndarray([0]) |
72 |
| -
|
73 |
| - def nuttall(M, sym=True): |
74 |
| - return numpy.ndarray([0]) |
75 |
| -
|
76 |
| - def parzen(M, sym=True): |
77 |
| - return numpy.ndarray([0]) |
78 |
| -
|
79 |
| - def slepian(M, width, sym=True): |
80 |
| - return numpy.ndarray([0]) |
81 |
| -
|
82 |
| - def step2(system, X0=None, T=None, N=None, **kwargs): |
83 |
| - return numpy.ndarray([0]), numpy.ndarray([0]) |
84 |
| -
|
85 |
| - def triang(M, sym=True): |
86 |
| - return numpy.ndarray([0]) |
87 |
| -
|
88 |
| - def tukey(M, alpha=0.5, sym=True): |
89 |
| - return numpy.ndarray([0]) |
90 |
| - """ |
91 |
| - ) |
92 |
| - |
93 |
| - |
94 |
| -register_module_extender(AstroidManager(), "scipy.signal", scipy_signal) |
| 6 | + |
| 7 | +# Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html |
| 8 | +# For details: https://github.com/PyCQA/astroid/blob/main/LICENSE |
| 9 | + |
| 10 | + |
| 11 | +"""Astroid hooks for scipy.signal module.""" |
| 12 | +from astroid.brain.helpers import register_module_extender |
| 13 | +from astroid.builder import parse |
| 14 | +from astroid.manager import AstroidManager |
| 15 | + |
| 16 | + |
| 17 | +def scipy_signal(): |
| 18 | + return parse( |
| 19 | + """ |
| 20 | + # different functions defined in scipy.signals |
| 21 | +
|
| 22 | + def barthann(M, sym=True): |
| 23 | + return numpy.ndarray([0]) |
| 24 | +
|
| 25 | + def bartlett(M, sym=True): |
| 26 | + return numpy.ndarray([0]) |
| 27 | +
|
| 28 | + def blackman(M, sym=True): |
| 29 | + return numpy.ndarray([0]) |
| 30 | +
|
| 31 | + def blackmanharris(M, sym=True): |
| 32 | + return numpy.ndarray([0]) |
| 33 | +
|
| 34 | + def bohman(M, sym=True): |
| 35 | + return numpy.ndarray([0]) |
| 36 | +
|
| 37 | + def boxcar(M, sym=True): |
| 38 | + return numpy.ndarray([0]) |
| 39 | +
|
| 40 | + def chebwin(M, at, sym=True): |
| 41 | + return numpy.ndarray([0]) |
| 42 | +
|
| 43 | + def cosine(M, sym=True): |
| 44 | + return numpy.ndarray([0]) |
| 45 | +
|
| 46 | + def exponential(M, center=None, tau=1.0, sym=True): |
| 47 | + return numpy.ndarray([0]) |
| 48 | +
|
| 49 | + def flattop(M, sym=True): |
| 50 | + return numpy.ndarray([0]) |
| 51 | +
|
| 52 | + def gaussian(M, std, sym=True): |
| 53 | + return numpy.ndarray([0]) |
| 54 | +
|
| 55 | + def general_gaussian(M, p, sig, sym=True): |
| 56 | + return numpy.ndarray([0]) |
| 57 | +
|
| 58 | + def hamming(M, sym=True): |
| 59 | + return numpy.ndarray([0]) |
| 60 | +
|
| 61 | + def hann(M, sym=True): |
| 62 | + return numpy.ndarray([0]) |
| 63 | +
|
| 64 | + def hanning(M, sym=True): |
| 65 | + return numpy.ndarray([0]) |
| 66 | +
|
| 67 | + def impulse2(system, X0=None, T=None, N=None, **kwargs): |
| 68 | + return numpy.ndarray([0]), numpy.ndarray([0]) |
| 69 | +
|
| 70 | + def kaiser(M, beta, sym=True): |
| 71 | + return numpy.ndarray([0]) |
| 72 | +
|
| 73 | + def nuttall(M, sym=True): |
| 74 | + return numpy.ndarray([0]) |
| 75 | +
|
| 76 | + def parzen(M, sym=True): |
| 77 | + return numpy.ndarray([0]) |
| 78 | +
|
| 79 | + def slepian(M, width, sym=True): |
| 80 | + return numpy.ndarray([0]) |
| 81 | +
|
| 82 | + def step2(system, X0=None, T=None, N=None, **kwargs): |
| 83 | + return numpy.ndarray([0]), numpy.ndarray([0]) |
| 84 | +
|
| 85 | + def triang(M, sym=True): |
| 86 | + return numpy.ndarray([0]) |
| 87 | +
|
| 88 | + def tukey(M, alpha=0.5, sym=True): |
| 89 | + return numpy.ndarray([0]) |
| 90 | + """ |
| 91 | + ) |
| 92 | + |
| 93 | + |
| 94 | +register_module_extender(AstroidManager(), "scipy.signal", scipy_signal) |
0 commit comments