Skip to content

Add benchmark with a massive model variableΒ #24

@michaelosthege

Description

@michaelosthege

The benchmark should recreate the shapes and dtypes from the following anonymized example:

<xarray.Dataset>
Dimensions:    (chain: 2, draw: 5000, a: 114574, b: 3)
Coordinates:
  * chain      (chain) int64 0 1
  * draw       (draw) int64 0 1 2 3 4 5 6 ... 4994 4995 4996 4997 4998 4999
  * a          (respondent) int64 0 1 2 3 4 5 ... 20819 20822 20823 20824 20825
  * b          (race) object 'first' 'second' 'third'
Data variables:
    v1         (chain, draw) float64 ...
    v2         (chain, draw, a) float64 ...
    v3         (chain, draw) float64 ...
    v4         (chain, draw) float64 ...
    v5         (chain, draw) float64 ...
    v6         (chain, draw) float64 ...
    v7         (chain, draw, b) float64 ...
    v8         (chain, draw) float64 ...
    v9         (chain, draw) float64 ...
Attributes:
    created_at:                2022-02-03T22:25:37.726525
    arviz_version:             0.11.4
    inference_library:         pymc3
    inference_library_version: 3.11.4
    sampling_time:             9668.074831008911
    tuning_steps:              1000

Note that the sampling time of this real world example is long enough to be an interesting use case for the ClickHouseBackend.

Metadata

Metadata

Labels

No labels
No labels

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions