|
| 1 | +import numpy as np |
| 2 | +import pymc as pm |
| 3 | +import pytest |
| 4 | +from numpy.testing import assert_almost_equal, assert_array_equal |
| 5 | + |
| 6 | +import pymc_bart as pmb |
| 7 | + |
| 8 | + |
| 9 | +class TestUtils: |
| 10 | + X_norm = np.random.normal(0, 1, size=(50, 2)) |
| 11 | + X_binom = np.random.binomial(1, 0.5, size=(50, 1)) |
| 12 | + X = np.hstack([X_norm, X_binom]) |
| 13 | + Y = np.random.normal(0, 1, size=50) |
| 14 | + |
| 15 | + with pm.Model() as model: |
| 16 | + mu = pmb.BART("mu", X, Y, m=10) |
| 17 | + sigma = pm.HalfNormal("sigma", 1) |
| 18 | + y = pm.Normal("y", mu, sigma, observed=Y) |
| 19 | + idata = pm.sample(tune=200, draws=200, random_seed=3415) |
| 20 | + |
| 21 | + def test_sample_posterior(self): |
| 22 | + all_trees = self.mu.owner.op.all_trees |
| 23 | + rng = np.random.default_rng(3) |
| 24 | + pred_all = pmb.utils._sample_posterior(all_trees, X=self.X, rng=rng, size=2) |
| 25 | + rng = np.random.default_rng(3) |
| 26 | + pred_first = pmb.utils._sample_posterior(all_trees, X=self.X[:10], rng=rng) |
| 27 | + |
| 28 | + assert_almost_equal(pred_first[0], pred_all[0, :10], decimal=4) |
| 29 | + assert pred_all.shape == (2, 50, 1) |
| 30 | + assert pred_first.shape == (1, 10, 1) |
| 31 | + |
| 32 | + @pytest.mark.parametrize( |
| 33 | + "kwargs", |
| 34 | + [ |
| 35 | + {}, |
| 36 | + { |
| 37 | + "samples": 2, |
| 38 | + "var_discrete": [3], |
| 39 | + }, |
| 40 | + {"instances": 2}, |
| 41 | + {"var_idx": [0], "smooth": False, "color": "k"}, |
| 42 | + {"grid": (1, 2), "sharey": "none", "alpha": 1}, |
| 43 | + {"var_discrete": [0]}, |
| 44 | + ], |
| 45 | + ) |
| 46 | + def test_ice(self, kwargs): |
| 47 | + pmb.plot_ice(self.mu, X=self.X, Y=self.Y, **kwargs) |
| 48 | + |
| 49 | + @pytest.mark.parametrize( |
| 50 | + "kwargs", |
| 51 | + [ |
| 52 | + {}, |
| 53 | + { |
| 54 | + "samples": 2, |
| 55 | + "xs_interval": "quantiles", |
| 56 | + "xs_values": [0.25, 0.5, 0.75], |
| 57 | + "var_discrete": [3], |
| 58 | + }, |
| 59 | + {"var_idx": [0], "smooth": False, "color": "k"}, |
| 60 | + {"grid": (1, 2), "sharey": "none", "alpha": 1}, |
| 61 | + {"var_discrete": [0]}, |
| 62 | + ], |
| 63 | + ) |
| 64 | + def test_pdp(self, kwargs): |
| 65 | + pmb.plot_pdp(self.mu, X=self.X, Y=self.Y, **kwargs) |
| 66 | + |
| 67 | + @pytest.mark.parametrize( |
| 68 | + "kwargs", |
| 69 | + [ |
| 70 | + {"samples": 50}, |
| 71 | + {"labels": ["A", "B", "C"], "samples": 2, "figsize": (6, 6)}, |
| 72 | + ], |
| 73 | + ) |
| 74 | + def test_vi(self, kwargs): |
| 75 | + samples = kwargs.pop("samples") |
| 76 | + vi_results = pmb.compute_variable_importance( |
| 77 | + self.idata, bartrv=self.mu, X=self.X, samples=samples |
| 78 | + ) |
| 79 | + pmb.plot_variable_importance(vi_results, **kwargs) |
| 80 | + pmb.plot_scatter_submodels(vi_results, **kwargs) |
| 81 | + |
| 82 | + def test_pdp_pandas_labels(self): |
| 83 | + pd = pytest.importorskip("pandas") |
| 84 | + |
| 85 | + X_names = ["norm1", "norm2", "binom"] |
| 86 | + X_pd = pd.DataFrame(self.X, columns=X_names) |
| 87 | + Y_pd = pd.Series(self.Y, name="response") |
| 88 | + axes = pmb.plot_pdp(self.mu, X=X_pd, Y=Y_pd) |
| 89 | + |
| 90 | + figure = axes[0].figure |
| 91 | + assert figure.texts[0].get_text() == "Partial response" |
| 92 | + assert_array_equal([ax.get_xlabel() for ax in axes], X_names) |
| 93 | + |
| 94 | + |
| 95 | +def test_encoder_decoder(): |
| 96 | + """Test that the encoder-decoder works correctly.""" |
| 97 | + test_cases = [ |
| 98 | + np.zeros(3, dtype=int), |
| 99 | + np.ones(10, dtype=int), |
| 100 | + np.array([4, 0, 1, 0, 2, 0, 3, 0, 0, 0]), |
| 101 | + np.array([100, 50, 0, 1]), |
| 102 | + np.array([1, 2, 4, 8, 16]), |
| 103 | + ] |
| 104 | + for case in test_cases: |
| 105 | + encoded = pmb.utils._encode_vi(case) |
| 106 | + decoded = pmb.utils._decode_vi(encoded, len(case)) |
| 107 | + assert np.array_equal(decoded, case) |
0 commit comments