diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index cb256a7d1..fea90ce6b 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -3,11 +3,11 @@ ci: repos: - repo: https://github.com/psf/black - rev: 23.7.0 + rev: 24.2.0 hooks: - id: black-jupyter - repo: https://github.com/nbQA-dev/nbQA - rev: 1.7.0 + rev: 1.7.1 hooks: - id: nbqa-isort additional_dependencies: [isort==5.6.4] diff --git a/examples/howto/blackbox_external_likelihood_numpy.ipynb b/examples/howto/blackbox_external_likelihood_numpy.ipynb index 7499d002e..e48339344 100644 --- a/examples/howto/blackbox_external_likelihood_numpy.ipynb +++ b/examples/howto/blackbox_external_likelihood_numpy.ipynb @@ -164,7 +164,6 @@ "source": [ "# define a pytensor Op for our likelihood function\n", "class LogLike(pt.Op):\n", - "\n", " \"\"\"\n", " Specify what type of object will be passed and returned to the Op when it is\n", " called. In our case we will be passing it a vector of values (the parameters\n", @@ -446,7 +445,6 @@ "\n", "\n", "class LogLikeGrad(pt.Op):\n", - "\n", " \"\"\"\n", " This Op will be called with a vector of values and also return a vector of\n", " values - the gradients in each dimension.\n", diff --git a/examples/howto/blackbox_external_likelihood_numpy.myst.md b/examples/howto/blackbox_external_likelihood_numpy.myst.md index 8d63f61d2..dad89f5d9 100644 --- a/examples/howto/blackbox_external_likelihood_numpy.myst.md +++ b/examples/howto/blackbox_external_likelihood_numpy.myst.md @@ -119,7 +119,6 @@ So, what we actually need to do is create a {ref}`PyTensor Op