|
1 | 1 | import numpy as np
|
| 2 | +import pytensor.tensor as pt |
2 | 3 |
|
3 | 4 | from pymc_extras.statespace.models.structural.core import Component
|
4 | 5 | from pymc_extras.statespace.models.structural.utils import order_to_mask
|
@@ -70,53 +71,109 @@ def __init__(
|
70 | 71 | if observed_state_names is None:
|
71 | 72 | observed_state_names = ["data"]
|
72 | 73 |
|
| 74 | + k_posdef = k_endog = len(observed_state_names) |
| 75 | + |
73 | 76 | order = order_to_mask(order)
|
74 | 77 | ar_lags = np.flatnonzero(order).ravel().astype(int) + 1
|
75 | 78 | k_states = len(order)
|
76 |
| - k_posdef = k_endog = len(observed_state_names) |
77 | 79 |
|
78 | 80 | self.order = order
|
79 | 81 | self.ar_lags = ar_lags
|
80 | 82 |
|
81 | 83 | super().__init__(
|
82 | 84 | name=name,
|
83 | 85 | k_endog=k_endog,
|
84 |
| - k_states=k_states, |
| 86 | + k_states=k_states * k_endog, |
85 | 87 | k_posdef=k_posdef,
|
86 | 88 | measurement_error=True,
|
87 | 89 | combine_hidden_states=True,
|
88 | 90 | observed_state_names=observed_state_names,
|
89 |
| - obs_state_idxs=np.r_[[1.0], np.zeros(k_states - 1)], |
| 91 | + obs_state_idxs=np.tile(np.r_[[1.0], np.zeros(k_states - 1)], k_endog), |
90 | 92 | )
|
91 | 93 |
|
92 | 94 | def populate_component_properties(self):
|
93 |
| - self.state_names = [f"L{i + 1}.data" for i in range(self.k_states)] |
94 |
| - self.shock_names = [f"{self.name}_innovation"] |
| 95 | + self.state_names = [ |
| 96 | + f"L{i + 1}.{state_name}" |
| 97 | + for i in range(self.k_states) |
| 98 | + for state_name in self.observed_state_names |
| 99 | + ] |
| 100 | + self.shock_names = [f"{name}_{self.name}_innovation" for name in self.observed_state_names] |
95 | 101 | self.param_names = ["ar_params", "sigma_ar"]
|
96 | 102 | self.param_dims = {"ar_params": (AR_PARAM_DIM,)}
|
97 | 103 | self.coords = {AR_PARAM_DIM: self.ar_lags.tolist()}
|
98 | 104 |
|
| 105 | + if self.k_endog > 1: |
| 106 | + self.param_dims["ar_params"] = ( |
| 107 | + f"{self.name}_endog", |
| 108 | + AR_PARAM_DIM, |
| 109 | + ) |
| 110 | + self.param_dims["sigma_ar"] = (f"{self.name}_endog",) |
| 111 | + |
| 112 | + self.coords[f"{self.name}_endog"] = self.observed_state_names |
| 113 | + |
99 | 114 | self.param_info = {
|
100 | 115 | "ar_params": {
|
101 |
| - "shape": (self.k_states,), |
| 116 | + "shape": (self.k_states,) if self.k_endog == 1 else (self.k_endog, self.k_states), |
102 | 117 | "constraints": None,
|
103 |
| - "dims": (AR_PARAM_DIM,), |
| 118 | + "dims": (AR_PARAM_DIM,) |
| 119 | + if self.k_endog == 1 |
| 120 | + else ( |
| 121 | + f"{self.name}_endog", |
| 122 | + AR_PARAM_DIM, |
| 123 | + ), |
| 124 | + }, |
| 125 | + "sigma_ar": { |
| 126 | + "shape": () if self.k_endog == 1 else (self.k_endog,), |
| 127 | + "constraints": "Positive", |
| 128 | + "dims": None if self.k_endog == 1 else (f"{self.name}_endog",), |
104 | 129 | },
|
105 |
| - "sigma_ar": {"shape": (), "constraints": "Positive", "dims": None}, |
106 | 130 | }
|
107 | 131 |
|
108 | 132 | def make_symbolic_graph(self) -> None:
|
| 133 | + k_endog = self.k_endog |
| 134 | + k_states = self.k_states // k_endog |
| 135 | + k_posdef = self.k_posdef |
| 136 | + |
109 | 137 | k_nonzero = int(sum(self.order))
|
110 |
| - ar_params = self.make_and_register_variable("ar_params", shape=(k_nonzero,)) |
111 |
| - sigma_ar = self.make_and_register_variable("sigma_ar", shape=()) |
| 138 | + ar_params = self.make_and_register_variable( |
| 139 | + "ar_params", shape=(k_nonzero,) if k_endog == 1 else (k_endog, k_nonzero) |
| 140 | + ) |
| 141 | + sigma_ar = self.make_and_register_variable( |
| 142 | + "sigma_ar", shape=() if k_endog == 1 else (k_endog,) |
| 143 | + ) |
| 144 | + |
| 145 | + if k_endog == 1: |
| 146 | + T = pt.eye(k_states, k=-1) |
| 147 | + ar_idx = (np.zeros(k_nonzero, dtype="int"), np.nonzero(self.order)[0]) |
| 148 | + T = T[ar_idx].set(ar_params) |
| 149 | + |
| 150 | + else: |
| 151 | + transition_matrices = [] |
| 152 | + |
| 153 | + for i in range(k_endog): |
| 154 | + T = pt.eye(k_states, k=-1) |
| 155 | + ar_idx = (np.zeros(k_nonzero, dtype="int"), np.nonzero(self.order)[0]) |
| 156 | + T = T[ar_idx].set(ar_params[i]) |
| 157 | + transition_matrices.append(T) |
| 158 | + T = pt.specify_shape( |
| 159 | + pt.linalg.block_diag(*transition_matrices), (self.k_states, self.k_states) |
| 160 | + ) |
112 | 161 |
|
113 |
| - T = np.eye(self.k_states, k=-1) |
114 | 162 | self.ssm["transition", :, :] = T
|
115 |
| - self.ssm["selection", 0, 0] = 1 |
116 |
| - self.ssm["design", 0, 0] = 1 |
117 | 163 |
|
118 |
| - ar_idx = ("transition", np.zeros(k_nonzero, dtype="int"), np.nonzero(self.order)[0]) |
119 |
| - self.ssm[ar_idx] = ar_params |
| 164 | + R = np.eye(k_states) |
| 165 | + R_mask = np.full((k_states), False) |
| 166 | + R_mask[0] = True |
| 167 | + R = R[:, R_mask] |
| 168 | + |
| 169 | + self.ssm["selection", :, :] = pt.specify_shape( |
| 170 | + pt.linalg.block_diag(*[R for _ in range(k_endog)]), (self.k_states, self.k_posdef) |
| 171 | + ) |
| 172 | + |
| 173 | + Z = pt.zeros((1, k_states))[0, 0].set(1.0) |
| 174 | + self.ssm["design", :, :] = pt.specify_shape( |
| 175 | + pt.linalg.block_diag(*[Z for _ in range(k_endog)]), (self.k_endog, self.k_states) |
| 176 | + ) |
120 | 177 |
|
121 |
| - cov_idx = ("state_cov", *np.diag_indices(1)) |
| 178 | + cov_idx = ("state_cov", *np.diag_indices(k_posdef)) |
122 | 179 | self.ssm[cov_idx] = sigma_ar**2
|
0 commit comments