You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
"identity" : Applies log importance weights directly without resampling.
1670
-
None : No importance sampling weights. Returns raw samples of size (num_paths, num_draws_per_path, N) where N is number of model parameters. Other methods return samples of size (num_draws, N).
1668
+
1669
+
- **"psis"** : Pareto Smoothed Importance Sampling (default). Usually most stable.
1670
+
- **"psir"** : Pareto Smoothed Importance Resampling. Less stable than PSIS.
1671
+
- **"identity"** : Applies log importance weights directly without resampling.
1672
+
- **None** : No importance sampling weights. Returns raw samples of size (num_paths, num_draws_per_path, N) where N is number of model parameters. Other methods return samples of size (num_draws, N).
1673
+
1671
1674
progressbar : bool, optional
1672
1675
Whether to display a progress bar (default is True). Setting this to False will likely reduce the computation time.
1673
1676
random_seed : RandomSeed, optional
@@ -1682,17 +1685,24 @@ def fit_pathfinder(
1682
1685
Additional keyword arguments for the Pathfinder algorithm.
1683
1686
compile_kwargs
1684
1687
Additional keyword arguments for the PyTensor compiler. If not provided, the default linker is "cvm_nogc".
1688
+
initvals: dict | None = None
1689
+
Initial values for the model parameters, as str:ndarray key-value pairs. Paritial initialization is permitted.
1690
+
If None, the model's default initial values are used.
1685
1691
1686
1692
Returns
1687
1693
-------
1688
-
arviz.InferenceData
1694
+
:class:`~arviz.InferenceData`
1689
1695
The inference data containing the results of the Pathfinder algorithm.
1690
1696
1691
1697
References
1692
1698
----------
1693
1699
Zhang, L., Carpenter, B., Gelman, A., & Vehtari, A. (2022). Pathfinder: Parallel quasi-Newton variational inference. Journal of Machine Learning Research, 23(306), 1-49.
0 commit comments