@@ -1199,10 +1199,38 @@ class TimeSeasonality(Component):
1199
1199
And so on. So for interpretation, the ``season_length - 1`` initial states are, when reversed, the coefficients
1200
1200
associated with ``state_names[1:]``.
1201
1201
1202
+ In the next example, we set :math:`s=3`, :math:`d=2`, ``remove_first_state=True``, and omit the shock term.
1203
+ By definition, the initial vector :math:`\alpha_{0}` is
1204
+
1205
+ .. math::
1206
+ \alpha_0=(\tilde{\gamma}_{0}, \tilde{\gamma}_{0}, \tilde{\gamma}_{-1}, \tilde{\gamma}_{-1})
1207
+
1208
+ and the transition matrix is
1209
+
1210
+ .. math::
1211
+ \begin{bmatrix}
1212
+ -1 & 0 & -1 & 0 \\
1213
+ 0 & -1 & 0 & -1 \\
1214
+ 1 & 0 & 0 & 0 \\
1215
+ 0 & 1 & 0 & 0 \\
1216
+ \end{bmatrix}
1217
+
1218
+ It is easy to verify that:
1219
+
1220
+ .. math::
1221
+ \begin{align}
1222
+ \gamma_1 &= -\tilde{\gamma}_0 - \tilde{\gamma}_{-1}\\
1223
+ \gamma_2 &= -(-\tilde{\gamma}_0 - \tilde{\gamma}_{-1})-\tilde{\gamma}_0\\
1224
+ &= \tilde{\gamma}_{-1}\\
1225
+ \gamma_3 &= -\tilde{\gamma}_{-1} +(\tilde{\gamma}_0 + \tilde{\gamma}_{-1})\\
1226
+ &= \tilde{\gamma}_{0}\\
1227
+ \gamma_4 &= -\tilde{\gamma}_0 - \tilde{\gamma}_{-1}.\\
1228
+ \end{align}
1229
+
1202
1230
.. warning::
1203
- Although the ``state_names`` argument expects a list of length ``season_length``, only ``state_names[1:]``
1204
- will be saved as model dimensions, since the 1st coefficient is not identified (it is defined as
1205
- :math:`-\sum_{i=1}^{s} \gamma_{t -i}`).
1231
+ Although the ``state_names`` argument expects a list of length ``season_length`` times ``duration``,
1232
+ only ``state_names[1:]`` will be saved as model dimensions, since the first coefficient is not identified
1233
+ (it is defined as :math:`-\sum_{i=1}^{s-1 } \tilde{\gamma}_{ -i}`).
1206
1234
1207
1235
Examples
1208
1236
--------
0 commit comments