@@ -202,11 +202,11 @@ def test_fit_laplace_ragged_coords(rng):
202
202
203
203
204
204
@pytest .mark .parametrize (
205
- "transform_samples " ,
205
+ "fit_in_unconstrained_space " ,
206
206
[True , False ],
207
207
ids = ["transformed" , "untransformed" ],
208
208
)
209
- def test_fit_laplace (transform_samples ):
209
+ def test_fit_laplace (fit_in_unconstrained_space ):
210
210
with pm .Model () as simp_model :
211
211
mu = pm .Normal ("mu" , mu = 3 , sigma = 0.5 )
212
212
sigma = pm .Exponential ("sigma" , 1 )
@@ -221,7 +221,7 @@ def test_fit_laplace(transform_samples):
221
221
optimize_method = "trust-ncg" ,
222
222
use_grad = True ,
223
223
use_hessp = True ,
224
- transform_samples = transform_samples ,
224
+ fit_in_unconstrained_space = fit_in_unconstrained_space ,
225
225
optimizer_kwargs = dict (maxiter = 100_000 , tol = 1e-100 ),
226
226
)
227
227
@@ -230,7 +230,7 @@ def test_fit_laplace(transform_samples):
230
230
np .mean (idata .posterior .sigma , axis = 1 ), np .full ((2 ,), 1.5 ), atol = 0.1
231
231
)
232
232
233
- if transform_samples :
233
+ if fit_in_unconstrained_space :
234
234
assert idata .fit .rows .values .tolist () == ["mu" , "sigma_log__" ]
235
235
np .testing .assert_allclose (idata .fit .mean_vector .values , np .array ([3.0 , 0.4 ]), atol = 0.1 )
236
236
else :
0 commit comments