6
6
from numpy .testing import assert_allclose , assert_array_less
7
7
8
8
from pymc_extras .statespace .filters import (
9
- CholeskyFilter ,
10
9
KalmanSmoother ,
11
10
SingleTimeseriesFilter ,
12
11
StandardFilter ,
33
32
RTOL = 1e-6 if floatX .endswith ("64" ) else 1e-3
34
33
35
34
standard_inout = initialize_filter (StandardFilter ())
36
- cholesky_inout = initialize_filter (CholeskyFilter ())
35
+ # cholesky_inout = initialize_filter(CholeskyFilter())
37
36
univariate_inout = initialize_filter (UnivariateFilter ())
38
37
39
38
f_standard = pytensor .function (* standard_inout , on_unused_input = "ignore" )
40
- f_cholesky = pytensor .function (* cholesky_inout , on_unused_input = "ignore" )
39
+ # f_cholesky = pytensor.function(*cholesky_inout, on_unused_input="ignore")
41
40
f_univariate = pytensor .function (* univariate_inout , on_unused_input = "ignore" )
42
41
43
- filter_funcs = [f_standard , f_cholesky , f_univariate ]
42
+ filter_funcs = [f_standard , f_univariate ]
44
43
45
44
filter_names = [
46
45
"StandardFilter" ,
47
- "CholeskyFilter" ,
48
46
"UnivariateFilter" ,
49
47
]
50
48
@@ -233,8 +231,8 @@ def test_last_smoother_is_last_filtered(filter_func, output_idx, rng):
233
231
@pytest .mark .skipif (floatX == "float32" , reason = "Tests are too sensitive for float32" )
234
232
def test_filters_match_statsmodel_output (filter_func , filter_name , n_missing , rng ):
235
233
fit_sm_mod , [data , a0 , P0 , c , d , T , Z , R , H , Q ] = nile_test_test_helper (rng , n_missing )
236
- if filter_name == "CholeskyFilter" :
237
- P0 = np .linalg .cholesky (P0 )
234
+ # if filter_name == "CholeskyFilter":
235
+ # P0 = np.linalg.cholesky(P0)
238
236
inputs = [data , a0 , P0 , c , d , T , Z , R , H , Q ]
239
237
outputs = filter_func (* inputs )
240
238
@@ -282,8 +280,8 @@ def test_all_covariance_matrices_are_PSD(filter_func, filter_name, n_missing, ob
282
280
pytest .skip ("Univariate filter not stable at half precision without measurement error" )
283
281
284
282
fit_sm_mod , [data , a0 , P0 , c , d , T , Z , R , H , Q ] = nile_test_test_helper (rng , n_missing )
285
- if filter_name == "CholeskyFilter" :
286
- P0 = np .linalg .cholesky (P0 )
283
+ # if filter_name == "CholeskyFilter":
284
+ # P0 = np.linalg.cholesky(P0)
287
285
288
286
H *= int (obs_noise )
289
287
inputs = [data , a0 , P0 , c , d , T , Z , R , H , Q ]
@@ -305,8 +303,8 @@ def test_all_covariance_matrices_are_PSD(filter_func, filter_name, n_missing, ob
305
303
306
304
@pytest .mark .parametrize (
307
305
"filter" ,
308
- [StandardFilter , CholeskyFilter ],
309
- ids = ["standard" , "cholesky" ],
306
+ [StandardFilter ],
307
+ ids = ["standard" ],
310
308
)
311
309
def test_kalman_filter_jax (filter ):
312
310
pytest .importorskip ("jax" )
0 commit comments