66from numpy .testing import assert_allclose , assert_array_less
77
88from pymc_extras .statespace .filters import (
9- CholeskyFilter ,
109 KalmanSmoother ,
1110 SingleTimeseriesFilter ,
1211 StandardFilter ,
3332RTOL = 1e-6 if floatX .endswith ("64" ) else 1e-3
3433
3534standard_inout = initialize_filter (StandardFilter ())
36- cholesky_inout = initialize_filter (CholeskyFilter ())
35+ # cholesky_inout = initialize_filter(CholeskyFilter())
3736univariate_inout = initialize_filter (UnivariateFilter ())
3837
3938f_standard = pytensor .function (* standard_inout , on_unused_input = "ignore" )
40- f_cholesky = pytensor .function (* cholesky_inout , on_unused_input = "ignore" )
39+ # f_cholesky = pytensor.function(*cholesky_inout, on_unused_input="ignore")
4140f_univariate = pytensor .function (* univariate_inout , on_unused_input = "ignore" )
4241
43- filter_funcs = [f_standard , f_cholesky , f_univariate ]
42+ filter_funcs = [f_standard , f_univariate ]
4443
4544filter_names = [
4645 "StandardFilter" ,
47- "CholeskyFilter" ,
4846 "UnivariateFilter" ,
4947]
5048
@@ -233,8 +231,8 @@ def test_last_smoother_is_last_filtered(filter_func, output_idx, rng):
233231@pytest .mark .skipif (floatX == "float32" , reason = "Tests are too sensitive for float32" )
234232def test_filters_match_statsmodel_output (filter_func , filter_name , n_missing , rng ):
235233 fit_sm_mod , [data , a0 , P0 , c , d , T , Z , R , H , Q ] = nile_test_test_helper (rng , n_missing )
236- if filter_name == "CholeskyFilter" :
237- P0 = np .linalg .cholesky (P0 )
234+ # if filter_name == "CholeskyFilter":
235+ # P0 = np.linalg.cholesky(P0)
238236 inputs = [data , a0 , P0 , c , d , T , Z , R , H , Q ]
239237 outputs = filter_func (* inputs )
240238
@@ -282,8 +280,8 @@ def test_all_covariance_matrices_are_PSD(filter_func, filter_name, n_missing, ob
282280 pytest .skip ("Univariate filter not stable at half precision without measurement error" )
283281
284282 fit_sm_mod , [data , a0 , P0 , c , d , T , Z , R , H , Q ] = nile_test_test_helper (rng , n_missing )
285- if filter_name == "CholeskyFilter" :
286- P0 = np .linalg .cholesky (P0 )
283+ # if filter_name == "CholeskyFilter":
284+ # P0 = np.linalg.cholesky(P0)
287285
288286 H *= int (obs_noise )
289287 inputs = [data , a0 , P0 , c , d , T , Z , R , H , Q ]
@@ -305,8 +303,8 @@ def test_all_covariance_matrices_are_PSD(filter_func, filter_name, n_missing, ob
305303
306304@pytest .mark .parametrize (
307305 "filter" ,
308- [StandardFilter , CholeskyFilter ],
309- ids = ["standard" , "cholesky" ],
306+ [StandardFilter ],
307+ ids = ["standard" ],
310308)
311309def test_kalman_filter_jax (filter ):
312310 pytest .importorskip ("jax" )
0 commit comments