|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "id": "0a5841d3", |
| 7 | + "metadata": {}, |
| 8 | + "outputs": [], |
| 9 | + "source": [ |
| 10 | + "import numpy as np\n", |
| 11 | + "import pytensor\n", |
| 12 | + "import pytensor.tensor as pt\n", |
| 13 | + "from pymc_extras.statespace.filters import StandardFilter\n", |
| 14 | + "from tests.statespace.utilities.test_helpers import make_test_inputs\n", |
| 15 | + "from pytensor.graph.replace import vectorize_graph\n", |
| 16 | + "from importlib import reload\n", |
| 17 | + "import pymc_extras.statespace.filters.distributions as pmss_dist\n", |
| 18 | + "from pymc_extras.statespace.filters.distributions import SequenceMvNormal\n", |
| 19 | + "import pymc as pm" |
| 20 | + ] |
| 21 | + }, |
| 22 | + { |
| 23 | + "cell_type": "code", |
| 24 | + "execution_count": 2, |
| 25 | + "id": "14299e50", |
| 26 | + "metadata": {}, |
| 27 | + "outputs": [], |
| 28 | + "source": [ |
| 29 | + "seed = sum(map(ord, \"batched-kf\"))\n", |
| 30 | + "rng = np.random.default_rng(seed)" |
| 31 | + ] |
| 32 | + }, |
| 33 | + { |
| 34 | + "cell_type": "code", |
| 35 | + "execution_count": 3, |
| 36 | + "id": "71bc513e", |
| 37 | + "metadata": {}, |
| 38 | + "outputs": [], |
| 39 | + "source": [ |
| 40 | + "def create_batch_inputs(batch_size, p=1, m=5, r=1, n=10, rng=rng):\n", |
| 41 | + " \"\"\"\n", |
| 42 | + " Create batched inputs for testing.\n", |
| 43 | + "\n", |
| 44 | + " Parameters\n", |
| 45 | + " ----------\n", |
| 46 | + " batch_size : int\n", |
| 47 | + " Number of batches to create\n", |
| 48 | + " p : int\n", |
| 49 | + " First dimension parameter\n", |
| 50 | + " m : int\n", |
| 51 | + " Second dimension parameter\n", |
| 52 | + " r : int\n", |
| 53 | + " Third dimension parameter\n", |
| 54 | + " n : int\n", |
| 55 | + " Fourth dimension parameter\n", |
| 56 | + " rng : numpy.random.Generator\n", |
| 57 | + " Random number generator\n", |
| 58 | + "\n", |
| 59 | + " Returns\n", |
| 60 | + " -------\n", |
| 61 | + " list\n", |
| 62 | + " List of stacked inputs for each batch\n", |
| 63 | + " \"\"\"\n", |
| 64 | + " # Create individual inputs for each batch\n", |
| 65 | + " np_batch_inputs = []\n", |
| 66 | + " for i in range(batch_size):\n", |
| 67 | + " inputs = make_test_inputs(p, m, r, n, rng)\n", |
| 68 | + " np_batch_inputs.append(inputs)\n", |
| 69 | + "\n", |
| 70 | + " return [np.stack(x, axis=0) for x in zip(*np_batch_inputs)]" |
| 71 | + ] |
| 72 | + }, |
| 73 | + { |
| 74 | + "cell_type": "code", |
| 75 | + "execution_count": 4, |
| 76 | + "id": "0c1824cf", |
| 77 | + "metadata": {}, |
| 78 | + "outputs": [ |
| 79 | + { |
| 80 | + "data": { |
| 81 | + "text/plain": [ |
| 82 | + "(3, 10, 1)" |
| 83 | + ] |
| 84 | + }, |
| 85 | + "execution_count": 4, |
| 86 | + "metadata": {}, |
| 87 | + "output_type": "execute_result" |
| 88 | + } |
| 89 | + ], |
| 90 | + "source": [ |
| 91 | + "# Create batch inputs with batch size 3\n", |
| 92 | + "np_batch_inputs = create_batch_inputs(3)\n", |
| 93 | + "np_batch_inputs[0].shape" |
| 94 | + ] |
| 95 | + }, |
| 96 | + { |
| 97 | + "cell_type": "code", |
| 98 | + "execution_count": 5, |
| 99 | + "id": "773d4cb4", |
| 100 | + "metadata": {}, |
| 101 | + "outputs": [], |
| 102 | + "source": [ |
| 103 | + "p, m, r, n = 1, 5, 1, 10\n", |
| 104 | + "inputs = [pt.as_tensor(x).type() for x in make_test_inputs(p, m, r, n, rng)]" |
| 105 | + ] |
| 106 | + }, |
| 107 | + { |
| 108 | + "cell_type": "code", |
| 109 | + "execution_count": 6, |
| 110 | + "id": "511de29f", |
| 111 | + "metadata": {}, |
| 112 | + "outputs": [], |
| 113 | + "source": [ |
| 114 | + "kf = StandardFilter()\n", |
| 115 | + "kf_outputs = kf.build_graph(*inputs)" |
| 116 | + ] |
| 117 | + }, |
| 118 | + { |
| 119 | + "cell_type": "code", |
| 120 | + "execution_count": 7, |
| 121 | + "id": "33006d8e", |
| 122 | + "metadata": {}, |
| 123 | + "outputs": [], |
| 124 | + "source": [ |
| 125 | + "batched_inputs = [pt.tensor(shape=(None, *x.type.shape)) for x in inputs]\n", |
| 126 | + "vec_subs = dict(zip(inputs, batched_inputs))\n", |
| 127 | + "bacthed_kf_outputs = vectorize_graph(kf_outputs, vec_subs)" |
| 128 | + ] |
| 129 | + }, |
| 130 | + { |
| 131 | + "cell_type": "code", |
| 132 | + "execution_count": 8, |
| 133 | + "id": "987a4647", |
| 134 | + "metadata": {}, |
| 135 | + "outputs": [ |
| 136 | + { |
| 137 | + "data": { |
| 138 | + "text/plain": [ |
| 139 | + "[filtered_states,\n", |
| 140 | + " predicted_states,\n", |
| 141 | + " observed_states,\n", |
| 142 | + " filtered_covariances,\n", |
| 143 | + " predicted_covariances,\n", |
| 144 | + " observed_covariances,\n", |
| 145 | + " loglike_obs]" |
| 146 | + ] |
| 147 | + }, |
| 148 | + "execution_count": 8, |
| 149 | + "metadata": {}, |
| 150 | + "output_type": "execute_result" |
| 151 | + } |
| 152 | + ], |
| 153 | + "source": [ |
| 154 | + "kf_outputs" |
| 155 | + ] |
| 156 | + }, |
| 157 | + { |
| 158 | + "cell_type": "code", |
| 159 | + "execution_count": 9, |
| 160 | + "id": "4b8be0f9", |
| 161 | + "metadata": {}, |
| 162 | + "outputs": [], |
| 163 | + "source": [ |
| 164 | + "mu = bacthed_kf_outputs[1]\n", |
| 165 | + "cov = bacthed_kf_outputs[4]\n", |
| 166 | + "logp = bacthed_kf_outputs[-1]" |
| 167 | + ] |
| 168 | + }, |
| 169 | + { |
| 170 | + "cell_type": "code", |
| 171 | + "execution_count": 10, |
| 172 | + "id": "1dc80f94", |
| 173 | + "metadata": {}, |
| 174 | + "outputs": [ |
| 175 | + { |
| 176 | + "data": { |
| 177 | + "text/plain": [ |
| 178 | + "(None, 10, 5)" |
| 179 | + ] |
| 180 | + }, |
| 181 | + "execution_count": 10, |
| 182 | + "metadata": {}, |
| 183 | + "output_type": "execute_result" |
| 184 | + } |
| 185 | + ], |
| 186 | + "source": [ |
| 187 | + "mu.type.shape" |
| 188 | + ] |
| 189 | + }, |
| 190 | + { |
| 191 | + "cell_type": "code", |
| 192 | + "execution_count": 20, |
| 193 | + "id": "1262c7d4", |
| 194 | + "metadata": {}, |
| 195 | + "outputs": [], |
| 196 | + "source": [ |
| 197 | + "pmss_dist = reload(pmss_dist)" |
| 198 | + ] |
| 199 | + }, |
| 200 | + { |
| 201 | + "cell_type": "code", |
| 202 | + "execution_count": 21, |
| 203 | + "id": "2dcd3958", |
| 204 | + "metadata": {}, |
| 205 | + "outputs": [ |
| 206 | + { |
| 207 | + "name": "stdout", |
| 208 | + "output_type": "stream", |
| 209 | + "text": [ |
| 210 | + "mus_.type.shape: (None, 10, 5), covs_.type.shape: (None, 10, 5, 5)\n", |
| 211 | + "mus.type.shape: (10, None, 5), covs.type.shape: (10, None, 5, 5)\n", |
| 212 | + "mvn_seq.type.shape: (None, None, 5)\n", |
| 213 | + "mvn_seq.type.shape: (None, 10, 5)\n", |
| 214 | + "mvn_seq.type.shape: (None, 10, 5)\n", |
| 215 | + "mvn_seq.type.shape: (None, 10, 5)\n", |
| 216 | + "mus_.type.shape: (None, 10, 5), covs_.type.shape: (None, 10, 5, 5)\n", |
| 217 | + "mus.type.shape: (10, None, 5), covs.type.shape: (10, None, 5, 5)\n", |
| 218 | + "mvn_seq.type.shape: (None, None, 5)\n", |
| 219 | + "mvn_seq.type.shape: (None, 10, 5)\n", |
| 220 | + "mvn_seq.type.shape: (None, 10, 5)\n", |
| 221 | + "mvn_seq.type.shape: (None, 10, 5)\n" |
| 222 | + ] |
| 223 | + } |
| 224 | + ], |
| 225 | + "source": [ |
| 226 | + "mv_outputs = pmss_dist.SequenceMvNormal.dist(mus=mu, covs=cov, logp=logp)" |
| 227 | + ] |
| 228 | + }, |
| 229 | + { |
| 230 | + "cell_type": "code", |
| 231 | + "execution_count": 22, |
| 232 | + "id": "6f41344f", |
| 233 | + "metadata": {}, |
| 234 | + "outputs": [], |
| 235 | + "source": [ |
| 236 | + "np_batch_inputs = create_batch_inputs(3)" |
| 237 | + ] |
| 238 | + }, |
| 239 | + { |
| 240 | + "cell_type": "code", |
| 241 | + "execution_count": 23, |
| 242 | + "id": "44905b8a", |
| 243 | + "metadata": {}, |
| 244 | + "outputs": [], |
| 245 | + "source": [ |
| 246 | + "np_batch_inputs[0] = rng.normal(size=(3, 10, 1))" |
| 247 | + ] |
| 248 | + }, |
| 249 | + { |
| 250 | + "cell_type": "code", |
| 251 | + "execution_count": 24, |
| 252 | + "id": "34fe01b8", |
| 253 | + "metadata": {}, |
| 254 | + "outputs": [ |
| 255 | + { |
| 256 | + "data": { |
| 257 | + "text/plain": [ |
| 258 | + "(3, 10, 5)" |
| 259 | + ] |
| 260 | + }, |
| 261 | + "execution_count": 24, |
| 262 | + "metadata": {}, |
| 263 | + "output_type": "execute_result" |
| 264 | + } |
| 265 | + ], |
| 266 | + "source": [ |
| 267 | + "f_test = pytensor.function(batched_inputs, mv_outputs)\n", |
| 268 | + "f_test(*np_batch_inputs).shape" |
| 269 | + ] |
| 270 | + }, |
| 271 | + { |
| 272 | + "cell_type": "code", |
| 273 | + "execution_count": 25, |
| 274 | + "id": "f37efe79", |
| 275 | + "metadata": {}, |
| 276 | + "outputs": [ |
| 277 | + { |
| 278 | + "name": "stdout", |
| 279 | + "output_type": "stream", |
| 280 | + "text": [ |
| 281 | + "(None, 10, 1) (None, 10, 5) (None, 10, 5, 5)\n" |
| 282 | + ] |
| 283 | + } |
| 284 | + ], |
| 285 | + "source": [ |
| 286 | + "f_mv = pytensor.function(batched_inputs, pm.logp(mv_outputs, batched_inputs[0]))" |
| 287 | + ] |
| 288 | + }, |
| 289 | + { |
| 290 | + "cell_type": "code", |
| 291 | + "execution_count": 26, |
| 292 | + "id": "7b45de74", |
| 293 | + "metadata": {}, |
| 294 | + "outputs": [ |
| 295 | + { |
| 296 | + "data": { |
| 297 | + "text/plain": [ |
| 298 | + "(3, 10)" |
| 299 | + ] |
| 300 | + }, |
| 301 | + "execution_count": 26, |
| 302 | + "metadata": {}, |
| 303 | + "output_type": "execute_result" |
| 304 | + } |
| 305 | + ], |
| 306 | + "source": [ |
| 307 | + "f_mv(*np_batch_inputs).shape" |
| 308 | + ] |
| 309 | + }, |
| 310 | + { |
| 311 | + "cell_type": "code", |
| 312 | + "execution_count": null, |
| 313 | + "id": "f14596aa", |
| 314 | + "metadata": {}, |
| 315 | + "outputs": [], |
| 316 | + "source": [] |
| 317 | + }, |
| 318 | + { |
| 319 | + "cell_type": "code", |
| 320 | + "execution_count": 27, |
| 321 | + "id": "69519822", |
| 322 | + "metadata": {}, |
| 323 | + "outputs": [], |
| 324 | + "source": [ |
| 325 | + "f = pytensor.function(batched_inputs, bacthed_kf_outputs)" |
| 326 | + ] |
| 327 | + }, |
| 328 | + { |
| 329 | + "cell_type": "code", |
| 330 | + "execution_count": 28, |
| 331 | + "id": "3f745449", |
| 332 | + "metadata": {}, |
| 333 | + "outputs": [ |
| 334 | + { |
| 335 | + "name": "stdout", |
| 336 | + "output_type": "stream", |
| 337 | + "text": [ |
| 338 | + "633 μs ± 18.9 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n", |
| 339 | + "1.52 ms ± 35.9 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n", |
| 340 | + "4.76 ms ± 259 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" |
| 341 | + ] |
| 342 | + } |
| 343 | + ], |
| 344 | + "source": [ |
| 345 | + "for s in [1, 3, 10]:\n", |
| 346 | + " np_batch_inputs = create_batch_inputs(s)\n", |
| 347 | + " %timeit outputs = f(*np_batch_inputs)" |
| 348 | + ] |
| 349 | + }, |
| 350 | + { |
| 351 | + "cell_type": "code", |
| 352 | + "execution_count": null, |
| 353 | + "id": "d5fcadef", |
| 354 | + "metadata": {}, |
| 355 | + "outputs": [], |
| 356 | + "source": [] |
| 357 | + }, |
| 358 | + { |
| 359 | + "cell_type": "code", |
| 360 | + "execution_count": null, |
| 361 | + "id": "c479ff22", |
| 362 | + "metadata": {}, |
| 363 | + "outputs": [], |
| 364 | + "source": [] |
| 365 | + } |
| 366 | + ], |
| 367 | + "metadata": { |
| 368 | + "kernelspec": { |
| 369 | + "display_name": "pymc-extras-test", |
| 370 | + "language": "python", |
| 371 | + "name": "python3" |
| 372 | + }, |
| 373 | + "language_info": { |
| 374 | + "codemirror_mode": { |
| 375 | + "name": "ipython", |
| 376 | + "version": 3 |
| 377 | + }, |
| 378 | + "file_extension": ".py", |
| 379 | + "mimetype": "text/x-python", |
| 380 | + "name": "python", |
| 381 | + "nbconvert_exporter": "python", |
| 382 | + "pygments_lexer": "ipython3", |
| 383 | + "version": "3.12.9" |
| 384 | + } |
| 385 | + }, |
| 386 | + "nbformat": 4, |
| 387 | + "nbformat_minor": 5 |
| 388 | +} |
0 commit comments