|
1 | 1 | import numpy as np
|
| 2 | +import pytensor |
2 | 3 | import pytest
|
3 | 4 |
|
4 | 5 | from numpy.testing import assert_allclose
|
5 | 6 | from pytensor import config
|
| 7 | +from pytensor.graph.basic import explicit_graph_inputs |
6 | 8 |
|
7 | 9 | from pymc_extras.statespace.models import structural as st
|
8 | 10 | from tests.statespace.models.structural.conftest import _assert_basic_coords_correct
|
|
11 | 13 |
|
12 | 14 | @pytest.mark.parametrize("order", [1, 2, [1, 0, 1]], ids=["AR1", "AR2", "AR(1,0,1)"])
|
13 | 15 | def test_autoregressive_model(order, rng):
|
14 |
| - ar = st.AutoregressiveComponent(order=order) |
| 16 | + k = sum(order) if isinstance(order, list) else order |
| 17 | + ar = st.AutoregressiveComponent(order=order).build(verbose=False) |
15 | 18 | params = {
|
16 |
| - "ar_params": np.full((sum(ar.order),), 0.5, dtype=config.floatX), |
17 |
| - "sigma_ar": 0.0, |
| 19 | + "auto_regressive_params": np.full((k,), 0.5, dtype=config.floatX), |
| 20 | + "auto_regressive_sigma": 0.1, |
| 21 | + "initial_state_cov": np.eye(k), |
18 | 22 | }
|
19 | 23 |
|
20 |
| - x, y = simulate_from_numpy_model(ar, rng, params, steps=100) |
21 |
| - |
22 | 24 | # Check coords
|
23 |
| - ar.build(verbose=False) |
24 | 25 | _assert_basic_coords_correct(ar)
|
| 26 | + |
25 | 27 | lags = np.arange(len(order) if isinstance(order, list) else order, dtype="int") + 1
|
26 | 28 | if isinstance(order, list):
|
27 | 29 | lags = lags[np.flatnonzero(order)]
|
28 |
| - assert_allclose(ar.coords["ar_lag"], lags) |
| 30 | + assert_allclose(ar.coords["auto_regressive_lag"], lags) |
29 | 31 |
|
30 | 32 |
|
31 |
| -def test_autoregressive_multiple_observed(rng): |
| 33 | +def test_autoregressive_multiple_observed_build(rng): |
32 | 34 | ar = st.AutoregressiveComponent(order=3, observed_state_names=["data_1", "data_2"])
|
33 | 35 | mod = ar.build(verbose=False)
|
34 | 36 |
|
| 37 | + assert mod.k_endog == 2 |
| 38 | + assert mod.k_states == 6 |
| 39 | + assert mod.k_posdef == 2 |
| 40 | + |
| 41 | + assert mod.state_names == [ |
| 42 | + "L1[data_1]", |
| 43 | + "L2[data_1]", |
| 44 | + "L3[data_1]", |
| 45 | + "L1[data_2]", |
| 46 | + "L2[data_2]", |
| 47 | + "L3[data_2]", |
| 48 | + ] |
| 49 | + |
| 50 | + assert mod.shock_names == ["data_1", "data_2"] |
| 51 | + |
35 | 52 | params = {
|
36 |
| - "ar_params": np.full( |
| 53 | + "auto_regressive_params": np.full( |
37 | 54 | (
|
38 | 55 | 2,
|
39 | 56 | sum(ar.order),
|
40 | 57 | ),
|
41 | 58 | 0.5,
|
42 | 59 | dtype=config.floatX,
|
43 | 60 | ),
|
44 |
| - "sigma_ar": np.ones((2,)) * 1e-3, |
| 61 | + "auto_regressive_sigma": np.array([0.05, 0.12]), |
45 | 62 | }
|
| 63 | + _, _, _, _, T, Z, R, _, Q = mod._unpack_statespace_with_placeholders() |
| 64 | + input_vars = explicit_graph_inputs([T, Z, R, Q]) |
| 65 | + fn = pytensor.function( |
| 66 | + inputs=list(input_vars), |
| 67 | + outputs=[T, Z, R, Q], |
| 68 | + mode="FAST_COMPILE", |
| 69 | + ) |
| 70 | + |
| 71 | + T, Z, R, Q = fn(**params) |
| 72 | + |
| 73 | + np.testing.assert_allclose( |
| 74 | + T, |
| 75 | + np.array( |
| 76 | + [ |
| 77 | + [0.5, 0.5, 0.5, 0.0, 0.0, 0.0], |
| 78 | + [1.0, 0.0, 0.0, 0.0, 0.0, 0.0], |
| 79 | + [0.0, 1.0, 0.0, 0.0, 0.0, 0.0], |
| 80 | + [0.0, 0.0, 0.0, 0.5, 0.5, 0.5], |
| 81 | + [0.0, 0.0, 0.0, 1.0, 0.0, 0.0], |
| 82 | + [0.0, 0.0, 0.0, 0.0, 1.0, 0.0], |
| 83 | + ] |
| 84 | + ), |
| 85 | + ) |
| 86 | + |
| 87 | + np.testing.assert_allclose( |
| 88 | + Z, np.array([[1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0]]) |
| 89 | + ) |
| 90 | + |
| 91 | + np.testing.assert_allclose( |
| 92 | + R, np.array([[1.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 1.0], [0.0, 0.0], [0.0, 0.0]]) |
| 93 | + ) |
| 94 | + |
| 95 | + np.testing.assert_allclose(Q, np.diag([0.05**2, 0.12**2])) |
| 96 | + |
| 97 | + |
| 98 | +def test_autoregressive_multiple_observed_data(rng): |
| 99 | + ar = st.AutoregressiveComponent(order=1, observed_state_names=["data_1", "data_2", "data_3"]) |
| 100 | + mod = ar.build(verbose=False) |
| 101 | + |
| 102 | + params = { |
| 103 | + "auto_regressive_params": np.array([0.9, 0.8, 0.5]).reshape((3, 1)), |
| 104 | + "auto_regressive_sigma": np.array([0.05, 0.12, 0.22]), |
| 105 | + "initial_state_cov": np.eye(3), |
| 106 | + } |
| 107 | + |
| 108 | + # Recover the AR(1) coefficients from the simulated data via OLS |
| 109 | + x, y = simulate_from_numpy_model(mod, rng, params, steps=2000) |
| 110 | + for i in range(3): |
| 111 | + ols_coefs = np.polyfit(y[:-1, i], y[1:, i], 1) |
| 112 | + np.testing.assert_allclose(ols_coefs[0], params["auto_regressive_params"][i, 0], atol=1e-1) |
| 113 | + |
| 114 | + |
| 115 | +def test_add_autoregressive_different_observed(): |
| 116 | + mod_1 = st.AutoregressiveComponent(order=1, name="ar1", observed_state_names=["data_1"]) |
| 117 | + mod_2 = st.AutoregressiveComponent(name="ar6", order=6, observed_state_names=["data_2"]) |
| 118 | + |
| 119 | + mod = (mod_1 + mod_2).build(verbose=False) |
| 120 | + |
| 121 | + print(mod.coords) |
| 122 | + |
| 123 | + assert mod.k_endog == 2 |
| 124 | + assert mod.k_states == 7 |
| 125 | + assert mod.k_posdef == 2 |
| 126 | + assert mod.state_names == [ |
| 127 | + "L1[data_1]", |
| 128 | + "L1[data_2]", |
| 129 | + "L2[data_2]", |
| 130 | + "L3[data_2]", |
| 131 | + "L4[data_2]", |
| 132 | + "L5[data_2]", |
| 133 | + "L6[data_2]", |
| 134 | + ] |
46 | 135 |
|
47 |
| - x, y = simulate_from_numpy_model(ar, rng, params, steps=100) |
| 136 | + assert mod.shock_names == ["data_1", "data_2"] |
| 137 | + assert mod.coords["ar1_lag"] == [1] |
| 138 | + assert mod.coords["ar6_lag"] == [1, 2, 3, 4, 5, 6] |
0 commit comments