@@ -509,7 +509,7 @@ def dist(cls, r, alpha, time_covariate_vector=None, *args, **kwargs):
509
509
time_covariate_vector = pt .as_tensor_variable (time_covariate_vector )
510
510
return super ().dist ([r , alpha , time_covariate_vector ], * args , ** kwargs )
511
511
512
- def logp (value , r , alpha , time_covariate_vector = None ):
512
+ def logp (value , r , alpha , time_covariate_vector ):
513
513
if time_covariate_vector is None :
514
514
time_covariate_vector = pt .constant (0.0 )
515
515
time_covariate_vector = pt .as_tensor_variable (time_covariate_vector )
@@ -547,14 +547,12 @@ def C_t(t):
547
547
msg = "r > 0, alpha > 0" ,
548
548
)
549
549
550
- def logcdf (value , r , alpha , time_covariate_vector = None ):
550
+ def logcdf (value , r , alpha , time_covariate_vector ):
551
551
if time_covariate_vector is None :
552
552
time_covariate_vector = pt .constant (0.0 )
553
553
time_covariate_vector = pt .as_tensor_variable (time_covariate_vector )
554
554
555
555
def C_t (t ):
556
- if t == 0 :
557
- return pt .constant (0.0 )
558
556
if time_covariate_vector .ndim == 0 :
559
557
return t
560
558
else :
@@ -576,7 +574,7 @@ def C_t(t):
576
574
msg = "r > 0, alpha > 0" ,
577
575
)
578
576
579
- def support_point (rv , size , r , alpha , time_covariate_vector = None ):
577
+ def support_point (rv , size , r , alpha , time_covariate_vector ):
580
578
"""Calculate a reasonable starting point for sampling.
581
579
582
580
For the GrassiaIIGeometric distribution, we use a point estimate based on
0 commit comments