1
1
Gallery . contents = {
2
- "BEST" : "Case Studies" ,
3
- "LKJ" : "Case Studies" ,
4
- "dawid-skene" : "Case Studies" ,
5
- "stochastic_volatility" : "Case Studies" ,
6
- "rugby_analytics" : "Case Studies" ,
7
- "multilevel_modeling" : "Case Studies" ,
8
- "Diagnosing_biased_Inference_with_Divergences" : "Diagnostics and Model Criticism" ,
9
- "model_comparison" : "Diagnostics and Model Criticism" ,
10
- "posterior_predictive" : "Diagnostics and Model Criticism" ,
11
- "Bayes_factor" : "Diagnostics and Model Criticism" ,
12
- "GLM" : "(Generalized) Linear and Hierarchical Linear Models" ,
13
- "GLM-linear" : "(Generalized) Linear and Hierarchical Linear Models" ,
14
- "GLM-logistic" : "(Generalized) Linear and Hierarchical Linear Models" ,
15
- "GLM-hierarchical-binominal-model" : "(Generalized) Linear and Hierarchical Linear Models" ,
16
- "GLM-hierarchical" : "(Generalized) Linear and Hierarchical Linear Models" ,
17
- "hierarchical_partial_pooling" : "(Generalized) Linear and Hierarchical Linear Models" ,
18
- "GLM-model-selection" : "(Generalized) Linear and Hierarchical Linear Models" ,
19
- "GLM-negative-binomial-regression" : "(Generalized) Linear and Hierarchical Linear Models" ,
20
- "GLM-poisson-regression" : "(Generalized) Linear and Hierarchical Linear Models" ,
21
- "GLM-robust-with-outlier-detection" : "(Generalized) Linear and Hierarchical Linear Models" ,
22
- "GLM-robust" : "(Generalized) Linear and Hierarchical Linear Models" ,
23
- "GLM-rolling-regression" : "(Generalized) Linear and Hierarchical Linear Models" ,
24
- "GLM-hierarchical-advi-minibatch" : "(Generalized) Linear and Hierarchical Linear Models" ,
2
+ "AR" : "Time Series" ,
3
+ "BEST" : "Applied" ,
4
+ "Bayes_factor" : "Other" ,
5
+ "Diagnosing_biased_Inference_with_Divergences" : "Diagnostics" ,
6
+ "Euler-Maruyama_and_SDEs" : "Time Series" ,
7
+ "GLM-hierarchical-advi-minibatch" : "Variational Inference" ,
8
+ "GLM-hierarchical-binominal-model" : "GLMs" ,
9
+ "GLM-hierarchical" : "GLMs" ,
10
+ "GLM-linear" : "GLMs" ,
11
+ "GLM-logistic" : "GLMs" ,
12
+ "GLM-model-selection" : "GLMs" ,
13
+ "GLM-negative-binomial-regression" : "GLMs" ,
14
+ "GLM-poisson-regression" : "GLMs" ,
15
+ "GLM-robust-with-outlier-detection" : "GLMs" ,
16
+ "GLM-robust" : "GLMs" ,
17
+ "GLM-rolling-regression" : "GLMs" ,
18
+ "GLM" : "GLMs" ,
25
19
"GP-Kron" : "Gaussian Processes" ,
26
20
"GP-Latent" : "Gaussian Processes" ,
27
21
"GP-Marginal" : "Gaussian Processes" ,
@@ -32,29 +26,32 @@ Gallery.contents = {
32
26
"GP-TProcess" : "Gaussian Processes" ,
33
27
"GP-slice-sampling" : "Gaussian Processes" ,
34
28
"GP-smoothing" : "Gaussian Processes" ,
35
- "gaussian_process" : "Gaussian Processes" ,
29
+ "MvGaussianRandomWalk_demo" : "Time Series" ,
30
+ "SMC2_gaussians" : "Other" ,
31
+ "bayes_param_survival_pymc3" : "Survival Analysis" ,
32
+ "bayesian_neural_network_advi" : "Variational Inference" ,
33
+ "bayesian_neural_network_with_sgfs" : "Stochastic Gradients" ,
34
+ "censored_data" : "Survival Analysis" ,
35
+ "constant_stochastic_gradient" : "Stochastic Gradients" ,
36
+ "convolutional_vae_keras_advi" : "Variational Inference" ,
37
+ "cox_model" : "Other" ,
38
+ "dawid-skene" : "Applied" ,
36
39
"dependent_density_regression" : "Mixture Models" ,
37
40
"dp_mix" : "Mixture Models" ,
41
+ "empirical-approx-overview" : "Variational Inference" ,
38
42
"gaussian-mixture-model-advi" : "Mixture Models" ,
39
43
"gaussian_mixture_model" : "Mixture Models" ,
44
+ "gaussian_process" : "Gaussian Processes" ,
45
+ "hierarchical_partial_pooling" : "GLMs" ,
46
+ "lda-advi-aevb" : "Variational Inference" ,
40
47
"marginalized_gaussian_mixture_model" : "Mixture Models" ,
41
- "SMC2_gaussians" : "Simulation-based Inference" ,
42
- "bayesian_neural_network_with_sgfs" : "Stochastic Gradients" ,
43
- "constant_stochastic_gradient" : "Stochastic Gradients" ,
48
+ "model_comparison" : "Diagnostics" ,
49
+ "multilevel_modeling" : "Applied" ,
50
+ "normalizing_flows_overview" : "Variational Inference" ,
51
+ "posterior_predictive" : "Diagnostics" ,
52
+ "rugby_analytics" : "Applied" ,
44
53
"sgfs_simple_optimization" : "Stochastic Gradients" ,
45
- "bayes_param_survival_pymc3" : "Survival Analysis" ,
46
- "censored_data" : "Survival Analysis" ,
54
+ "stochastic_volatility" : "Applied" ,
47
55
"survival_analysis" : "Survival Analysis" ,
48
- "weibull_aft" : "Survival Analysis" ,
49
- "cox_model" : "Survival Analysis" ,
50
- "MvGaussianRandomWalk_demo" : "Time Series" ,
51
- "AR" : "Time Series" ,
52
- "Euler-Maruyama_and_SDEs" : "Time Series" ,
53
- "bayesian_neural_network_advi" : "Variational Inference" ,
54
- "convolutional_vae_keras_advi" : "Variational Inference" ,
55
- "empirical-approx-overview" : "Variational Inference" ,
56
- "lda-advi-aevb" : "Variational Inference" ,
57
- "normalizing_flows_overview" : "Variational Inference" ,
58
- "gaussian-mixture-model-advi" : "Variational Inference" ,
59
- "GLM-hierarchical-advi-minibatch" : "Variational Inference"
56
+ "weibull_aft" : "Survival Analysis"
60
57
}
0 commit comments