@@ -1326,17 +1326,21 @@ def setup_class(self):
1326
1326
b = Normal ('beta' , mu = 0 , sigma = 10 , shape = (2 ,), observed = beta )
1327
1327
sigma = HalfNormal ('sigma' , sigma = 1 )
1328
1328
1329
+ #Test Cholesky parameterization
1330
+ Z = MvNormal ('Z' , mu = np .zeros (2 ), chol = np .eye (2 ), shape = (2 ,))
1331
+
1329
1332
# Expected value of outcome
1330
1333
mu = Deterministic ('mu' , floatX (alpha + tt .dot (X , b )))
1331
1334
1332
1335
# Likelihood (sampling distribution) of observations
1333
1336
Y_obs = Normal ('Y_obs' , mu = mu , sigma = sigma , observed = Y )
1334
- self .distributions = [alpha , sigma , mu , b , Y_obs ]
1337
+ self .distributions = [alpha , sigma , mu , b , Z , Y_obs ]
1335
1338
self .expected = (
1336
1339
r'$\text{alpha} \sim \text{Normal}(\mathit{mu}=0.0,~\mathit{sigma}=10.0)$' ,
1337
1340
r'$\text{sigma} \sim \text{HalfNormal}(\mathit{sigma}=1.0)$' ,
1338
1341
r'$\text{mu} \sim \text{Deterministic}(\text{alpha},~\text{Constant},~\text{beta})$' ,
1339
1342
r'$\text{beta} \sim \text{Normal}(\mathit{mu}=0.0,~\mathit{sigma}=10.0)$' ,
1343
+ r'$Z \sim \text{MvNormal}(\mathit{mu}=array, \mathit{chol}=array)$' ,
1340
1344
r'$\text{Y_obs} \sim \text{Normal}(\mathit{mu}=\text{mu},~\mathit{sigma}=f(\text{sigma}))$'
1341
1345
)
1342
1346
0 commit comments