Skip to content

Commit 40001d2

Browse files
authored
Update continuous.py
Updated the docstrings for better clarity. Replaced "log-likelihood" with "distribution" to accurately describe the functionality, as the class provides more than just log-likelihood, including mean, variance, covariance, etc.
1 parent eaa22ae commit 40001d2

File tree

1 file changed

+30
-30
lines changed

1 file changed

+30
-30
lines changed

pymc/distributions/continuous.py

Lines changed: 30 additions & 30 deletions
Original file line numberDiff line numberDiff line change
@@ -246,7 +246,7 @@ def get_tau_sigma(
246246

247247
class Uniform(BoundedContinuous):
248248
r"""
249-
Continuous uniform log-likelihood.
249+
Continuous uniform distribution.
250250
251251
The pdf of this distribution is
252252
@@ -360,7 +360,7 @@ def rng_fn(cls, rng, size):
360360

361361

362362
class Flat(Continuous):
363-
"""Uninformative log-likelihood that returns 0 regardless of the passed value."""
363+
"""Uninformative distribution that returns 0 regardless of the passed value."""
364364

365365
rv_op = flat
366366

@@ -417,7 +417,7 @@ def logcdf(value):
417417

418418
class Normal(Continuous):
419419
r"""
420-
Univariate normal log-likelihood.
420+
Univariate normal distribution.
421421
422422
The pdf of this distribution is
423423
@@ -558,7 +558,7 @@ def rng_fn(
558558

559559
class TruncatedNormal(BoundedContinuous):
560560
r"""
561-
Univariate truncated normal log-likelihood.
561+
Univariate truncated normal distribution.
562562
563563
The pdf of this distribution is
564564
@@ -745,7 +745,7 @@ def truncated_normal_default_transform(op, rv):
745745

746746
class HalfNormal(PositiveContinuous):
747747
r"""
748-
Half-normal log-likelihood.
748+
Half-normal distribution.
749749
750750
The pdf of this distribution is
751751
@@ -875,7 +875,7 @@ def rng_fn(cls, rng, mu, lam, alpha, size) -> np.ndarray:
875875

876876
class Wald(PositiveContinuous):
877877
r"""
878-
Wald log-likelihood.
878+
Wald distribution.
879879
880880
The pdf of this distribution is
881881
@@ -1055,7 +1055,7 @@ def rng_fn(cls, rng, alpha, beta, size) -> np.ndarray:
10551055

10561056
class Beta(UnitContinuous):
10571057
r"""
1058-
Beta log-likelihood.
1058+
Beta distribution.
10591059
10601060
The pdf of this distribution is
10611061
@@ -1241,7 +1241,7 @@ def rv_op(cls, a, b, *, size=None, rng=None):
12411241

12421242
class Kumaraswamy(UnitContinuous):
12431243
r"""
1244-
Kumaraswamy log-likelihood.
1244+
Kumaraswamy distribution.
12451245
12461246
The pdf of this distribution is
12471247
@@ -1331,7 +1331,7 @@ def logcdf(value, a, b):
13311331

13321332
class Exponential(PositiveContinuous):
13331333
r"""
1334-
Exponential log-likelihood.
1334+
Exponential distribution.
13351335
13361336
The pdf of this distribution is
13371337
@@ -1426,7 +1426,7 @@ def icdf(value, mu):
14261426

14271427
class Laplace(Continuous):
14281428
r"""
1429-
Laplace log-likelihood.
1429+
Laplace distribution.
14301430
14311431
The pdf of this distribution is
14321432
@@ -1548,7 +1548,7 @@ def rv_op(cls, b, kappa, mu, *, size=None, rng=None):
15481548

15491549
class AsymmetricLaplace(Continuous):
15501550
r"""
1551-
Asymmetric-Laplace log-likelihood.
1551+
Asymmetric-Laplace distribution.
15521552
15531553
The pdf of this distribution is
15541554
@@ -1639,7 +1639,7 @@ def logp(value, b, kappa, mu):
16391639

16401640
class LogNormal(PositiveContinuous):
16411641
r"""
1642-
Log-normal log-likelihood.
1642+
Log-normal distribution.
16431643
16441644
Distribution of any random variable whose logarithm is normally
16451645
distributed. A variable might be modeled as log-normal if it can
@@ -1758,7 +1758,7 @@ def icdf(value, mu, sigma):
17581758

17591759
class StudentT(Continuous):
17601760
r"""
1761-
Student's T log-likelihood.
1761+
Student's T distribution.
17621762
17631763
Describes a normal variable whose precision is gamma distributed.
17641764
If only nu parameter is passed, this specifies a standard (central)
@@ -1904,7 +1904,7 @@ def rng_fn(cls, rng, a, b, mu, sigma, size=None) -> np.ndarray:
19041904

19051905
class SkewStudentT(Continuous):
19061906
r"""
1907-
Skewed Student's T distribution log-likelihood.
1907+
Skewed Student's T distribution distribution.
19081908
19091909
This follows Jones and Faddy (2003)
19101910
@@ -2019,7 +2019,7 @@ def icdf(value, a, b, mu, sigma):
20192019

20202020
class Pareto(BoundedContinuous):
20212021
r"""
2022-
Pareto log-likelihood.
2022+
Pareto distribution.
20232023
20242024
Often used to characterize wealth distribution, or other examples of the
20252025
80/20 rule.
@@ -2128,7 +2128,7 @@ def pareto_default_transform(op, rv):
21282128

21292129
class Cauchy(Continuous):
21302130
r"""
2131-
Cauchy log-likelihood.
2131+
Cauchy distribution.
21322132
21332133
Also known as the Lorentz or the Breit-Wigner distribution.
21342134
@@ -2216,7 +2216,7 @@ def icdf(value, alpha, beta):
22162216

22172217
class HalfCauchy(PositiveContinuous):
22182218
r"""
2219-
Half-Cauchy log-likelihood.
2219+
Half-Cauchy distribution.
22202220
22212221
The pdf of this distribution is
22222222
@@ -2300,7 +2300,7 @@ def icdf(value, loc, beta):
23002300

23012301
class Gamma(PositiveContinuous):
23022302
r"""
2303-
Gamma log-likelihood.
2303+
Gamma distribution.
23042304
23052305
Represents the sum of alpha exponentially distributed random variables,
23062306
each of which has rate beta.
@@ -2429,7 +2429,7 @@ def icdf(value, alpha, scale):
24292429

24302430
class InverseGamma(PositiveContinuous):
24312431
r"""
2432-
Inverse gamma log-likelihood, the reciprocal of the gamma distribution.
2432+
Inverse gamma distribution, the reciprocal of the gamma distribution.
24332433
24342434
The pdf of this distribution is
24352435
@@ -2545,7 +2545,7 @@ def logcdf(value, alpha, beta):
25452545

25462546
class ChiSquared:
25472547
r"""
2548-
:math:`\chi^2` log-likelihood.
2548+
:math:`\chi^2` distribution.
25492549
25502550
This is the distribution from the sum of the squares of :math:`\nu` independent standard normal random variables or a special
25512551
case of the gamma distribution with :math:`\alpha = \nu/2` and :math:`\beta = 1/2`.
@@ -2617,7 +2617,7 @@ def rng_fn(cls, rng, alpha, beta, size) -> np.ndarray:
26172617

26182618
class Weibull(PositiveContinuous):
26192619
r"""
2620-
Weibull log-likelihood.
2620+
Weibull distribution.
26212621
26222622
The pdf of this distribution is
26232623
@@ -2738,7 +2738,7 @@ def rv_op(cls, nu, sigma, *, size=None, rng=None) -> np.ndarray:
27382738

27392739
class HalfStudentT(PositiveContinuous):
27402740
r"""
2741-
Half Student's T log-likelihood.
2741+
Half Student's T distribution.
27422742
27432743
The pdf of this distribution is
27442744
@@ -2859,7 +2859,7 @@ def rv_op(cls, mu, sigma, nu, *, size=None, rng=None):
28592859

28602860
class ExGaussian(Continuous):
28612861
r"""
2862-
Exponentially modified Gaussian log-likelihood.
2862+
Exponentially modified Gaussian distribution.
28632863
28642864
Results from the convolution of a normal distribution with an exponential
28652865
distribution.
@@ -2982,7 +2982,7 @@ def logcdf(value, mu, sigma, nu):
29822982

29832983
class VonMises(CircularContinuous):
29842984
r"""
2985-
Univariate VonMises log-likelihood.
2985+
Univariate VonMises distribution.
29862986
29872987
The pdf of this distribution is
29882988
@@ -3068,7 +3068,7 @@ def rng_fn(cls, rng, mu, sigma, alpha, size=None) -> np.ndarray:
30683068

30693069
class SkewNormal(Continuous):
30703070
r"""
3071-
Univariate skew-normal log-likelihood.
3071+
Univariate skew-normal distribution.
30723072
30733073
The pdf of this distribution is
30743074
@@ -3163,7 +3163,7 @@ def logp(value, mu, sigma, alpha):
31633163

31643164
class Triangular(BoundedContinuous):
31653165
r"""
3166-
Continuous Triangular log-likelihood.
3166+
Continuous Triangular distribution.
31673167
31683168
The pdf of this distribution is
31693169
@@ -3292,7 +3292,7 @@ def triangular_default_transform(op, rv):
32923292

32933293
class Gumbel(Continuous):
32943294
r"""
3295-
Univariate right-skewed Gumbel log-likelihood.
3295+
Univariate right-skewed Gumbel distribution.
32963296
32973297
This distribution is typically used for modeling maximum (or extreme) values.
32983298
Those looking to find the extreme minimum provided by the left-skewed Gumbel should
@@ -3519,7 +3519,7 @@ def logp(value, b, sigma):
35193519

35203520
class Logistic(Continuous):
35213521
r"""
3522-
Logistic log-likelihood.
3522+
Logistic distribution.
35233523
35243524
The pdf of this distribution is
35253525
@@ -3627,7 +3627,7 @@ def rv_op(cls, mu, sigma, *, size=None, rng=None):
36273627

36283628
class LogitNormal(UnitContinuous):
36293629
r"""
3630-
Logit-Normal log-likelihood.
3630+
Logit-Normal distribution.
36313631
36323632
The pdf of this distribution is
36333633
@@ -3872,7 +3872,7 @@ def rng_fn(cls, rng, mu, sigma, size=None) -> np.ndarray:
38723872

38733873
class Moyal(Continuous):
38743874
r"""
3875-
Moyal log-likelihood.
3875+
Moyal distribution.
38763876
38773877
The pdf of this distribution is
38783878

0 commit comments

Comments
 (0)