@@ -246,7 +246,7 @@ def get_tau_sigma(
246246
247247class Uniform (BoundedContinuous ):
248248 r"""
249- Continuous uniform log-likelihood .
249+ Continuous uniform distribution .
250250
251251 The pdf of this distribution is
252252
@@ -360,7 +360,7 @@ def rng_fn(cls, rng, size):
360360
361361
362362class Flat (Continuous ):
363- """Uninformative log-likelihood that returns 0 regardless of the passed value."""
363+ """Uninformative distribution that returns 0 regardless of the passed value."""
364364
365365 rv_op = flat
366366
@@ -417,7 +417,7 @@ def logcdf(value):
417417
418418class Normal (Continuous ):
419419 r"""
420- Univariate normal log-likelihood .
420+ Univariate normal distribution .
421421
422422 The pdf of this distribution is
423423
@@ -558,7 +558,7 @@ def rng_fn(
558558
559559class TruncatedNormal (BoundedContinuous ):
560560 r"""
561- Univariate truncated normal log-likelihood .
561+ Univariate truncated normal distribution .
562562
563563 The pdf of this distribution is
564564
@@ -745,7 +745,7 @@ def truncated_normal_default_transform(op, rv):
745745
746746class HalfNormal (PositiveContinuous ):
747747 r"""
748- Half-normal log-likelihood .
748+ Half-normal distribution .
749749
750750 The pdf of this distribution is
751751
@@ -875,7 +875,7 @@ def rng_fn(cls, rng, mu, lam, alpha, size) -> np.ndarray:
875875
876876class Wald (PositiveContinuous ):
877877 r"""
878- Wald log-likelihood .
878+ Wald distribution .
879879
880880 The pdf of this distribution is
881881
@@ -1055,7 +1055,7 @@ def rng_fn(cls, rng, alpha, beta, size) -> np.ndarray:
10551055
10561056class Beta (UnitContinuous ):
10571057 r"""
1058- Beta log-likelihood .
1058+ Beta distribution .
10591059
10601060 The pdf of this distribution is
10611061
@@ -1241,7 +1241,7 @@ def rv_op(cls, a, b, *, size=None, rng=None):
12411241
12421242class Kumaraswamy (UnitContinuous ):
12431243 r"""
1244- Kumaraswamy log-likelihood .
1244+ Kumaraswamy distribution .
12451245
12461246 The pdf of this distribution is
12471247
@@ -1331,7 +1331,7 @@ def logcdf(value, a, b):
13311331
13321332class Exponential (PositiveContinuous ):
13331333 r"""
1334- Exponential log-likelihood .
1334+ Exponential distribution .
13351335
13361336 The pdf of this distribution is
13371337
@@ -1426,7 +1426,7 @@ def icdf(value, mu):
14261426
14271427class Laplace (Continuous ):
14281428 r"""
1429- Laplace log-likelihood .
1429+ Laplace distribution .
14301430
14311431 The pdf of this distribution is
14321432
@@ -1548,7 +1548,7 @@ def rv_op(cls, b, kappa, mu, *, size=None, rng=None):
15481548
15491549class AsymmetricLaplace (Continuous ):
15501550 r"""
1551- Asymmetric-Laplace log-likelihood .
1551+ Asymmetric-Laplace distribution .
15521552
15531553 The pdf of this distribution is
15541554
@@ -1639,7 +1639,7 @@ def logp(value, b, kappa, mu):
16391639
16401640class LogNormal (PositiveContinuous ):
16411641 r"""
1642- Log-normal log-likelihood .
1642+ Log-normal distribution .
16431643
16441644 Distribution of any random variable whose logarithm is normally
16451645 distributed. A variable might be modeled as log-normal if it can
@@ -1758,7 +1758,7 @@ def icdf(value, mu, sigma):
17581758
17591759class StudentT (Continuous ):
17601760 r"""
1761- Student's T log-likelihood .
1761+ Student's T distribution .
17621762
17631763 Describes a normal variable whose precision is gamma distributed.
17641764 If only nu parameter is passed, this specifies a standard (central)
@@ -1904,7 +1904,7 @@ def rng_fn(cls, rng, a, b, mu, sigma, size=None) -> np.ndarray:
19041904
19051905class SkewStudentT (Continuous ):
19061906 r"""
1907- Skewed Student's T distribution log-likelihood .
1907+ Skewed Student's T distribution distribution .
19081908
19091909 This follows Jones and Faddy (2003)
19101910
@@ -2019,7 +2019,7 @@ def icdf(value, a, b, mu, sigma):
20192019
20202020class Pareto (BoundedContinuous ):
20212021 r"""
2022- Pareto log-likelihood .
2022+ Pareto distribution .
20232023
20242024 Often used to characterize wealth distribution, or other examples of the
20252025 80/20 rule.
@@ -2128,7 +2128,7 @@ def pareto_default_transform(op, rv):
21282128
21292129class Cauchy (Continuous ):
21302130 r"""
2131- Cauchy log-likelihood .
2131+ Cauchy distribution .
21322132
21332133 Also known as the Lorentz or the Breit-Wigner distribution.
21342134
@@ -2216,7 +2216,7 @@ def icdf(value, alpha, beta):
22162216
22172217class HalfCauchy (PositiveContinuous ):
22182218 r"""
2219- Half-Cauchy log-likelihood .
2219+ Half-Cauchy distribution .
22202220
22212221 The pdf of this distribution is
22222222
@@ -2300,7 +2300,7 @@ def icdf(value, loc, beta):
23002300
23012301class Gamma (PositiveContinuous ):
23022302 r"""
2303- Gamma log-likelihood .
2303+ Gamma distribution .
23042304
23052305 Represents the sum of alpha exponentially distributed random variables,
23062306 each of which has rate beta.
@@ -2429,7 +2429,7 @@ def icdf(value, alpha, scale):
24292429
24302430class InverseGamma (PositiveContinuous ):
24312431 r"""
2432- Inverse gamma log-likelihood , the reciprocal of the gamma distribution.
2432+ Inverse gamma distribution , the reciprocal of the gamma distribution.
24332433
24342434 The pdf of this distribution is
24352435
@@ -2545,7 +2545,7 @@ def logcdf(value, alpha, beta):
25452545
25462546class ChiSquared :
25472547 r"""
2548- :math:`\chi^2` log-likelihood .
2548+ :math:`\chi^2` distribution .
25492549
25502550 This is the distribution from the sum of the squares of :math:`\nu` independent standard normal random variables or a special
25512551 case of the gamma distribution with :math:`\alpha = \nu/2` and :math:`\beta = 1/2`.
@@ -2617,7 +2617,7 @@ def rng_fn(cls, rng, alpha, beta, size) -> np.ndarray:
26172617
26182618class Weibull (PositiveContinuous ):
26192619 r"""
2620- Weibull log-likelihood .
2620+ Weibull distribution .
26212621
26222622 The pdf of this distribution is
26232623
@@ -2738,7 +2738,7 @@ def rv_op(cls, nu, sigma, *, size=None, rng=None) -> np.ndarray:
27382738
27392739class HalfStudentT (PositiveContinuous ):
27402740 r"""
2741- Half Student's T log-likelihood .
2741+ Half Student's T distribution .
27422742
27432743 The pdf of this distribution is
27442744
@@ -2859,7 +2859,7 @@ def rv_op(cls, mu, sigma, nu, *, size=None, rng=None):
28592859
28602860class ExGaussian (Continuous ):
28612861 r"""
2862- Exponentially modified Gaussian log-likelihood .
2862+ Exponentially modified Gaussian distribution .
28632863
28642864 Results from the convolution of a normal distribution with an exponential
28652865 distribution.
@@ -2982,7 +2982,7 @@ def logcdf(value, mu, sigma, nu):
29822982
29832983class VonMises (CircularContinuous ):
29842984 r"""
2985- Univariate VonMises log-likelihood .
2985+ Univariate VonMises distribution .
29862986
29872987 The pdf of this distribution is
29882988
@@ -3068,7 +3068,7 @@ def rng_fn(cls, rng, mu, sigma, alpha, size=None) -> np.ndarray:
30683068
30693069class SkewNormal (Continuous ):
30703070 r"""
3071- Univariate skew-normal log-likelihood .
3071+ Univariate skew-normal distribution .
30723072
30733073 The pdf of this distribution is
30743074
@@ -3163,7 +3163,7 @@ def logp(value, mu, sigma, alpha):
31633163
31643164class Triangular (BoundedContinuous ):
31653165 r"""
3166- Continuous Triangular log-likelihood .
3166+ Continuous Triangular distribution .
31673167
31683168 The pdf of this distribution is
31693169
@@ -3292,7 +3292,7 @@ def triangular_default_transform(op, rv):
32923292
32933293class Gumbel (Continuous ):
32943294 r"""
3295- Univariate right-skewed Gumbel log-likelihood .
3295+ Univariate right-skewed Gumbel distribution .
32963296
32973297 This distribution is typically used for modeling maximum (or extreme) values.
32983298 Those looking to find the extreme minimum provided by the left-skewed Gumbel should
@@ -3519,7 +3519,7 @@ def logp(value, b, sigma):
35193519
35203520class Logistic (Continuous ):
35213521 r"""
3522- Logistic log-likelihood .
3522+ Logistic distribution .
35233523
35243524 The pdf of this distribution is
35253525
@@ -3627,7 +3627,7 @@ def rv_op(cls, mu, sigma, *, size=None, rng=None):
36273627
36283628class LogitNormal (UnitContinuous ):
36293629 r"""
3630- Logit-Normal log-likelihood .
3630+ Logit-Normal distribution .
36313631
36323632 The pdf of this distribution is
36333633
@@ -3872,7 +3872,7 @@ def rng_fn(cls, rng, mu, sigma, size=None) -> np.ndarray:
38723872
38733873class Moyal (Continuous ):
38743874 r"""
3875- Moyal log-likelihood .
3875+ Moyal distribution .
38763876
38773877 The pdf of this distribution is
38783878
0 commit comments