|
35 | 35 | from aesara.tensor.math import tanh
|
36 | 36 | from aesara.tensor.random.basic import (
|
37 | 37 | BetaRV,
|
38 |
| - CauchyRV, |
39 |
| - HalfCauchyRV, |
40 |
| - HalfNormalRV, |
41 |
| - LogNormalRV, |
42 |
| - NormalRV, |
43 |
| - UniformRV, |
| 38 | + cauchy, |
44 | 39 | chisquare,
|
45 | 40 | exponential,
|
46 | 41 | gamma,
|
47 | 42 | gumbel,
|
| 43 | + halfcauchy, |
| 44 | + halfnormal, |
48 | 45 | invgamma,
|
49 | 46 | laplace,
|
50 | 47 | logistic,
|
| 48 | + lognormal, |
51 | 49 | normal,
|
52 | 50 | pareto,
|
53 | 51 | triangular,
|
| 52 | + uniform, |
54 | 53 | vonmises,
|
55 | 54 | )
|
56 | 55 | from aesara.tensor.random.op import RandomVariable
|
@@ -253,13 +252,6 @@ def get_tau_sigma(tau=None, sigma=None):
|
253 | 252 | return floatX(tau), floatX(sigma)
|
254 | 253 |
|
255 | 254 |
|
256 |
| -class PyMCUniformRV(UniformRV): |
257 |
| - _print_name = ("Uniform", "\\operatorname{Uniform}") |
258 |
| - |
259 |
| - |
260 |
| -pymc_uniform = PyMCUniformRV() |
261 |
| - |
262 |
| - |
263 | 255 | class Uniform(BoundedContinuous):
|
264 | 256 | r"""
|
265 | 257 | Continuous uniform log-likelihood.
|
@@ -303,8 +295,7 @@ class Uniform(BoundedContinuous):
|
303 | 295 | upper : tensor_like of float, default 1
|
304 | 296 | Upper limit.
|
305 | 297 | """
|
306 |
| - rv_op = pymc_uniform |
307 |
| - rv_type = UniformRV |
| 298 | + rv_op = uniform |
308 | 299 | bound_args_indices = (3, 4) # Lower, Upper
|
309 | 300 |
|
310 | 301 | @classmethod
|
@@ -488,13 +479,6 @@ def logcdf(value):
|
488 | 479 | return at.switch(at.lt(value, np.inf), -np.inf, at.switch(at.eq(value, np.inf), 0, -np.inf))
|
489 | 480 |
|
490 | 481 |
|
491 |
| -class PyMCNormalRV(NormalRV): |
492 |
| - _print_name = ("Normal", "\\operatorname{Normal}") |
493 |
| - |
494 |
| - |
495 |
| -pymc_normal = PyMCNormalRV() |
496 |
| - |
497 |
| - |
498 | 482 | class Normal(Continuous):
|
499 | 483 | r"""
|
500 | 484 | Univariate normal log-likelihood.
|
@@ -560,8 +544,7 @@ class Normal(Continuous):
|
560 | 544 | with pm.Model():
|
561 | 545 | x = pm.Normal('x', mu=0, tau=1/23)
|
562 | 546 | """
|
563 |
| - rv_op = pymc_normal |
564 |
| - rv_type = NormalRV |
| 547 | + rv_op = normal |
565 | 548 |
|
566 | 549 | @classmethod
|
567 | 550 | def dist(cls, mu=0, sigma=None, tau=None, **kwargs):
|
@@ -818,13 +801,6 @@ def truncated_normal_default_transform(op, rv):
|
818 | 801 | return bounded_cont_transform(op, rv, TruncatedNormal.bound_args_indices)
|
819 | 802 |
|
820 | 803 |
|
821 |
| -class PyMCHalfNormalRV(HalfNormalRV): |
822 |
| - _print_name = ("HalfNormal", "\\operatorname{HalfNormal}") |
823 |
| - |
824 |
| - |
825 |
| -pymc_halfnormal = PyMCHalfNormalRV() |
826 |
| - |
827 |
| - |
828 | 804 | class HalfNormal(PositiveContinuous):
|
829 | 805 | r"""
|
830 | 806 | Half-normal log-likelihood.
|
@@ -891,8 +867,7 @@ class HalfNormal(PositiveContinuous):
|
891 | 867 | with pm.Model():
|
892 | 868 | x = pm.HalfNormal('x', tau=1/15)
|
893 | 869 | """
|
894 |
| - rv_op = pymc_halfnormal |
895 |
| - rv_type = HalfNormalRV |
| 870 | + rv_op = halfnormal |
896 | 871 |
|
897 | 872 | @classmethod
|
898 | 873 | def dist(cls, sigma=None, tau=None, *args, **kwargs):
|
@@ -1715,13 +1690,6 @@ def logp(value, b, kappa, mu):
|
1715 | 1690 | return check_parameters(res, 0 < b, 0 < kappa, msg="b > 0, kappa > 0")
|
1716 | 1691 |
|
1717 | 1692 |
|
1718 |
| -class PyMCLogNormalRV(LogNormalRV): |
1719 |
| - _print_name = ("LogNormal", "\\operatorname{LogNormal}") |
1720 |
| - |
1721 |
| - |
1722 |
| -pymc_lognormal = PyMCLogNormalRV() |
1723 |
| - |
1724 |
| - |
1725 | 1693 | class LogNormal(PositiveContinuous):
|
1726 | 1694 | r"""
|
1727 | 1695 | Log-normal log-likelihood.
|
@@ -1790,8 +1758,7 @@ class LogNormal(PositiveContinuous):
|
1790 | 1758 | x = pm.LogNormal('x', mu=2, tau=1/100)
|
1791 | 1759 | """
|
1792 | 1760 |
|
1793 |
| - rv_op = pymc_lognormal |
1794 |
| - rv_type = LogNormalRV |
| 1761 | + rv_op = lognormal |
1795 | 1762 |
|
1796 | 1763 | @classmethod
|
1797 | 1764 | def dist(cls, mu=0, sigma=None, tau=None, *args, **kwargs):
|
@@ -2082,13 +2049,6 @@ def pareto_default_transform(op, rv):
|
2082 | 2049 | return bounded_cont_transform(op, rv, Pareto.bound_args_indices)
|
2083 | 2050 |
|
2084 | 2051 |
|
2085 |
| -class PyMCCauchyRV(CauchyRV): |
2086 |
| - _print_name = ("Cauchy", "\\operatorname{Cauchy}") |
2087 |
| - |
2088 |
| - |
2089 |
| -pymc_cauchy = PyMCCauchyRV() |
2090 |
| - |
2091 |
| - |
2092 | 2052 | class Cauchy(Continuous):
|
2093 | 2053 | r"""
|
2094 | 2054 | Cauchy log-likelihood.
|
@@ -2135,8 +2095,7 @@ class Cauchy(Continuous):
|
2135 | 2095 | beta : tensor_like of float
|
2136 | 2096 | Scale parameter > 0.
|
2137 | 2097 | """
|
2138 |
| - rv_op = pymc_cauchy |
2139 |
| - rv_type = CauchyRV |
| 2098 | + rv_op = cauchy |
2140 | 2099 |
|
2141 | 2100 | @classmethod
|
2142 | 2101 | def dist(cls, alpha, beta, *args, **kwargs):
|
@@ -2174,13 +2133,6 @@ def logcdf(value, alpha, beta):
|
2174 | 2133 | )
|
2175 | 2134 |
|
2176 | 2135 |
|
2177 |
| -class PyMCHalfCauchyRV(HalfCauchyRV): |
2178 |
| - _print_name = ("HalfCauchy", "\\operatorname{HalfCauchy}") |
2179 |
| - |
2180 |
| - |
2181 |
| -pymc_halfcauchy = PyMCHalfCauchyRV() |
2182 |
| - |
2183 |
| - |
2184 | 2136 | class HalfCauchy(PositiveContinuous):
|
2185 | 2137 | r"""
|
2186 | 2138 | Half-Cauchy log-likelihood.
|
@@ -2220,8 +2172,7 @@ class HalfCauchy(PositiveContinuous):
|
2220 | 2172 | beta : tensor_like of float
|
2221 | 2173 | Scale parameter (beta > 0).
|
2222 | 2174 | """
|
2223 |
| - rv_op = pymc_halfcauchy |
2224 |
| - rv_type = HalfCauchyRV |
| 2175 | + rv_op = halfcauchy |
2225 | 2176 |
|
2226 | 2177 | @classmethod
|
2227 | 2178 | def dist(cls, beta, *args, **kwargs):
|
@@ -3991,7 +3942,7 @@ class PolyaGammaRV(RandomVariable):
|
3991 | 3942 | ndim_supp = 0
|
3992 | 3943 | ndims_params = [0, 0]
|
3993 | 3944 | dtype = "floatX"
|
3994 |
| - _print_name = ("PolyaGamma", "\\operatorname{PolyaGamma}") |
| 3945 | + _print_name = ("PG", "\\operatorname{PG}") |
3995 | 3946 |
|
3996 | 3947 | def __call__(self, h=1.0, z=0.0, size=None, **kwargs):
|
3997 | 3948 | return super().__call__(h, z, size=size, **kwargs)
|
|
0 commit comments