@@ -151,7 +151,7 @@ def track_glm_hierarchical_ess(self, init):
151
151
start = start , random_seed = 100 , progressbar = False ,
152
152
compute_convergence_checks = False )
153
153
tot = time .time () - t0
154
- ess = pm .effective_n (trace , ( 'mu_a' ,)) ['mu_a' ]
154
+ ess = float ( pm .ess (trace , var_names = [ 'mu_a' ]) ['mu_a' ]. values )
155
155
return ess / tot
156
156
157
157
def track_marginal_mixture_model_ess (self , init ):
@@ -165,7 +165,7 @@ def track_marginal_mixture_model_ess(self, init):
165
165
start = start , random_seed = 100 , progressbar = False ,
166
166
compute_convergence_checks = False )
167
167
tot = time .time () - t0
168
- ess = pm .effective_n (trace , ( 'mu' ,)) ['mu' ].min () # worst case
168
+ ess = pm .ess (trace , var_names = [ 'mu' ]) ['mu' ]. values .min () # worst case
169
169
return ess / tot
170
170
171
171
@@ -190,7 +190,7 @@ def track_glm_hierarchical_ess(self, step):
190
190
random_seed = 100 , progressbar = False ,
191
191
compute_convergence_checks = False )
192
192
tot = time .time () - t0
193
- ess = pm .effective_n (trace , ( 'mu_a' ,)) ['mu_a' ]
193
+ ess = float ( pm .ess (trace , var_names = [ 'mu_a' ]) ['mu_a' ]. values )
194
194
return ess / tot
195
195
196
196
0 commit comments