Skip to content

Commit 67a66a8

Browse files
committed
DOC Move some examples into subfolders.
1 parent 3469425 commit 67a66a8

File tree

4 files changed

+43
-26
lines changed

4 files changed

+43
-26
lines changed

docs/source/examples.rst

Lines changed: 25 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -8,25 +8,40 @@ Examples
88
notebooks/BEST.ipynb
99
notebooks/LKJ.ipynb
1010
notebooks/stochastic_volatility.ipynb
11+
notebooks/pmf-pymc.ipynb
12+
notebooks/rugby_analytics.ipynb
13+
notebooks/survival_analysis.ipynb
14+
notebooks/posterior_predictive.ipynb
15+
notebooks/GP-smoothing.ipynb
16+
notebooks/howto_debugging.ipynb
17+
18+
GLM
19+
===
20+
21+
.. toctree::
1122
notebooks/GLM-linear.ipynb
1223
notebooks/GLM-robust.ipynb
1324
notebooks/GLM-robust-with-outlier-detection.ipynb
1425
notebooks/GLM-model-selection.ipynb
1526
notebooks/GLM-rolling-regression.ipynb
1627
notebooks/GLM-logistic.ipynb
1728
notebooks/GLM-hierarchical.ipynb
29+
notebooks/GLM-poisson-regression.ipynb
30+
31+
ADVI
32+
====
33+
34+
.. toctree::
1835
notebooks/GLM-hierarchical-ADVI.ipynb
1936
notebooks/GLM-hierarchical-advi-minibatch.ipynb
20-
notebooks/GLM-poisson-regression.ipynb
21-
notebooks/pmf-pymc.ipynb
22-
notebooks/rugby_analytics.ipynb
23-
notebooks/posterior_predictive.ipynb
24-
notebooks/survival_analysis.ipynb
25-
notebooks/GP-smoothing.ipynb
26-
notebooks/Bayesian_LogReg.ipynb
27-
notebooks/dp_mix.ipynb
28-
notebooks/bayesian_neural_network_advi.ipynb
2937
notebooks/lda-advi-aevb.ipynb
38+
notebooks/bayesian_neural_network_advi.ipynb
39+
40+
Mixture Models
41+
==============
42+
43+
.. toctree::
3044
notebooks/gaussian_mixture_model.ipynb
3145
notebooks/gaussian-mixture-model-advi.ipynb
32-
notebooks/howto_debugging.ipynb
46+
notebooks/dp_mix.ipynb
47+

docs/source/notebooks/GLM-hierarchical-ADVI.ipynb

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -206,9 +206,9 @@
206206
"cell_type": "markdown",
207207
"metadata": {},
208208
"source": [
209-
"# Posterior Predictive Check\n",
209+
"## Posterior Predictive Check\n",
210210
"\n",
211-
"## The Root Mean Square Deviation\n",
211+
"### The Root Mean Square Deviation\n",
212212
"\n",
213213
"To find out which of the models explains the data better we can calculate the Root Mean Square Deviaton (RMSD). This posterior predictive check revolves around recreating the data based on the parameters found at different moments in the chain. The recreated or predicted values are subsequently compared to the real data points, the model that predicts data points closer to the original data is considered the better one. Thus, the lower the RMSD the better.\n",
214214
"\n",

docs/source/notebooks/gaussian_mixture_model.ipynb

Lines changed: 11 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,14 @@
11
{
22
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"metadata": {},
6+
"source": [
7+
"# Gaussian Mixture Model\n",
8+
"\n",
9+
"Original NB by Abe Flaxman, modified by Thomas Wiecki\n"
10+
]
11+
},
312
{
413
"cell_type": "code",
514
"execution_count": 1,
@@ -23,15 +32,6 @@
2332
"sns.set_style('darkgrid')"
2433
]
2534
},
26-
{
27-
"cell_type": "markdown",
28-
"metadata": {},
29-
"source": [
30-
"# Mixture Model in PyMC3\n",
31-
"\n",
32-
"Original NB by Abe Flaxman, modified by Thomas Wiecki\n"
33-
]
34-
},
3535
{
3636
"cell_type": "code",
3737
"execution_count": 2,
@@ -321,8 +321,9 @@
321321
}
322322
],
323323
"metadata": {
324+
"anaconda-cloud": {},
324325
"kernelspec": {
325-
"display_name": "Python 3",
326+
"display_name": "Python [default]",
326327
"language": "python",
327328
"name": "python3"
328329
},

docs/source/notebooks/survival_analysis.ipynb

Lines changed: 5 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@
1010
"\n",
1111
"[Survival analysis](https://en.wikipedia.org/wiki/Survival_analysis) studies the distribution of the time to an event. Its applications span many fields across medicine, biology, engineering, and social science. This tutorial shows how to fit and analyze a Bayesian survival model in Python using [PyMC3](https://pymc-devs.github.io/pymc3).\n",
1212
"\n",
13-
"We illustrate these concepts by analyzing a [mastectomy data set](https://vincentarelbundock.github.io/Rdatasets/doc/HSAUR/mastectomy.html) from `R`'s [`HSAUR`](https://cran.r-project.org/web/packages/HSAUR/index.html) package."
13+
"We illustrate these concepts by analyzing a [mastectomy data set](https://vincentarelbundock.github.io/Rdatasets/doc/HSAUR/mastectomy.html) from `R`'s [HSAUR](https://cran.r-project.org/web/packages/HSAUR/index.html) package."
1414
]
1515
},
1616
{
@@ -53,7 +53,7 @@
5353
"cell_type": "markdown",
5454
"metadata": {},
5555
"source": [
56-
"Fortunately, [`statsmodels.datasets`](http://statsmodels.sourceforge.net/0.6.0/datasets/index.html) makes it quite easy to load a number of data sets from `R`."
56+
"Fortunately, [statsmodels.datasets](http://statsmodels.sourceforge.net/0.6.0/datasets/index.html) makes it quite easy to load a number of data sets from `R`."
5757
]
5858
},
5959
{
@@ -968,8 +968,9 @@
968968
}
969969
],
970970
"metadata": {
971+
"anaconda-cloud": {},
971972
"kernelspec": {
972-
"display_name": "Python 3",
973+
"display_name": "Python [default]",
973974
"language": "python",
974975
"name": "python3"
975976
},
@@ -983,7 +984,7 @@
983984
"name": "python",
984985
"nbconvert_exporter": "python",
985986
"pygments_lexer": "ipython3",
986-
"version": "3.5.1"
987+
"version": "3.5.2"
987988
}
988989
},
989990
"nbformat": 4,

0 commit comments

Comments
 (0)