Skip to content

Commit 7471e4e

Browse files
aloctavodiaColCarroll
authored andcommitted
remove df_summary (#2893)
* remove df_summary * fix typo
1 parent 6f77cc6 commit 7471e4e

10 files changed

+241
-323
lines changed

RELEASE-NOTES.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -27,6 +27,7 @@
2727
### Deprecations
2828

2929
- DIC and BPIC calculations have been removed
30+
- df_summary have been removed, use summary instead
3031
- `njobs` and `nchains` kwarg are deprecated in favor of `cores` and `chains` for `sample`
3132
- `lag` kwarg in `pm.stats.autocorr` and `pm.stats.autocov` is deprecated.
3233

docs/source/notebooks/BEST.ipynb

Lines changed: 91 additions & 67 deletions
Large diffs are not rendered by default.

docs/source/notebooks/Bayes_factor.ipynb

Lines changed: 48 additions & 52 deletions
Large diffs are not rendered by default.

docs/source/notebooks/GLM-model-selection.ipynb

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@
1616
"name": "stdout",
1717
"output_type": "stream",
1818
"text": [
19-
"Runing on PyMC3 v3.3\n"
19+
"Running on PyMC3 v3.3\n"
2020
]
2121
}
2222
],
@@ -31,7 +31,7 @@
3131
"from ipywidgets import interactive, fixed\n",
3232
"\n",
3333
"plt.style.use('seaborn-darkgrid')\n",
34-
"print('Runing on PyMC3 v{}'.format(pm.__version__))\n",
34+
"print('Running on PyMC3 v{}'.format(pm.__version__))\n",
3535
"rndst = np.random.RandomState(0)"
3636
]
3737
},

docs/source/notebooks/GLM-negative-binomial-regression.ipynb

Lines changed: 34 additions & 34 deletions
Original file line numberDiff line numberDiff line change
@@ -4,52 +4,50 @@
44
"cell_type": "markdown",
55
"metadata": {},
66
"source": [
7-
"# GLM: Negative Binomial Regression\n",
8-
"\n",
9-
"This notebook demos negative binomial regression using the `glm` submodule. It closely follows the GLM Poisson regression example by [Jonathan Sedar](https://github.com/jonsedar) (which is in turn insipired by [a project by Ian Osvald](http://ianozsvald.com/2016/05/07/statistically-solving-sneezes-and-sniffles-a-work-in-progress-report-at-pydatalondon-2016/)) except the data here is negative binomially distributed instead of Poisson distributed.\n",
10-
"\n",
11-
"Negative binomial regression is used to model count data for which the variance is higher than the mean. The [negative binomial distribution](https://en.wikipedia.org/wiki/Negative_binomial_distribution) can be thought of as a Poisson distribution whose rate parameter is gamma distributed, so that rate parameter can be adjusted to account for the increased variance.\n",
12-
"\n",
13-
"#### Contents\n",
14-
"\n",
15-
"+ [Setup](#Setup)\n",
16-
" + [Convenience Functions](#Convenience-Functions)\n",
17-
" + [Generate Data](#Generate-Data)\n",
18-
" + [Poisson Data](#Poisson-Data)\n",
19-
" + [Negative Binomial Data](#Negative-Binomial-Data)\n",
20-
" + [Visualize the Data](#Visualize-the-Data)\n",
21-
"\n",
22-
"\n",
23-
"+ [Negative Binomial Regression](#Negative-Binomial-Regression)\n",
24-
" + [Create GLM Model](#Create-GLM-Model)\n",
25-
" + [View Results](#View-Results)\n"
26-
]
27-
},
28-
{
29-
"cell_type": "markdown",
30-
"metadata": {},
31-
"source": [
32-
"## Setup"
7+
"# GLM: Negative Binomial Regression"
338
]
349
},
3510
{
3611
"cell_type": "code",
3712
"execution_count": 1,
38-
"metadata": {
39-
"scrolled": true
40-
},
41-
"outputs": [],
13+
"metadata": {},
14+
"outputs": [
15+
{
16+
"name": "stderr",
17+
"output_type": "stream",
18+
"text": [
19+
"/home/osvaldo/anaconda3/lib/python3.6/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.\n",
20+
" from ._conv import register_converters as _register_converters\n"
21+
]
22+
},
23+
{
24+
"name": "stdout",
25+
"output_type": "stream",
26+
"text": [
27+
"Running on PyMC3 v3.3\n"
28+
]
29+
}
30+
],
4231
"source": [
32+
"%matplotlib inline\n",
4333
"import numpy as np\n",
4434
"import pandas as pd\n",
4535
"import pymc3 as pm\n",
4636
"from scipy import stats\n",
47-
"from scipy import optimize\n",
4837
"import matplotlib.pyplot as plt\n",
38+
"plt.style.use('seaborn-darkgrid')\n",
4939
"import seaborn as sns\n",
5040
"import re\n",
41+
"print('Running on PyMC3 v{}'.format(pm.__version__))"
42+
]
43+
},
44+
{
45+
"cell_type": "markdown",
46+
"metadata": {},
47+
"source": [
48+
"This notebook demos negative binomial regression using the `glm` submodule. It closely follows the GLM Poisson regression example by [Jonathan Sedar](https://github.com/jonsedar) (which is in turn inspired by [a project by Ian Osvald](http://ianozsvald.com/2016/05/07/statistically-solving-sneezes-and-sniffles-a-work-in-progress-report-at-pydatalondon-2016/)) except the data here is negative binomially distributed instead of Poisson distributed.\n",
5149
"\n",
52-
"%matplotlib inline"
50+
"Negative binomial regression is used to model count data for which the variance is higher than the mean. The [negative binomial distribution](https://en.wikipedia.org/wiki/Negative_binomial_distribution) can be thought of as a Poisson distribution whose rate parameter is gamma distributed, so that rate parameter can be adjusted to account for the increased variance."
5351
]
5452
},
5553
{
@@ -246,7 +244,9 @@
246244
{
247245
"cell_type": "code",
248246
"execution_count": 6,
249-
"metadata": {},
247+
"metadata": {
248+
"collapsed": true
249+
},
250250
"outputs": [],
251251
"source": [
252252
"# Gamma shape parameter\n",
@@ -670,7 +670,7 @@
670670
"name": "python",
671671
"nbconvert_exporter": "python",
672672
"pygments_lexer": "ipython3",
673-
"version": "3.5.2"
673+
"version": "3.6.3"
674674
}
675675
},
676676
"nbformat": 4,

0 commit comments

Comments
 (0)