@@ -617,13 +617,27 @@ def full_from_distance(self, dist: TensorLike, squared: bool = False) -> TensorV
617
617
618
618
class Matern52 (Stationary ):
619
619
r"""
620
- The Matern kernel with nu = 5/2 .
620
+ The Matérn kernel with :math:`\ nu = \frac{5}{2}` .
621
621
622
622
.. math::
623
623
624
624
k(x, x') = \left(1 + \frac{\sqrt{5(x - x')^2}}{\ell} +
625
625
\frac{5(x-x')^2}{3\ell^2}\right)
626
626
\mathrm{exp}\left[ - \frac{\sqrt{5(x - x')^2}}{\ell} \right]
627
+
628
+ Read more `here <https://en.wikipedia.org/wiki/Mat%C3%A9rn_covariance_function>`_.
629
+
630
+ Parameters
631
+ ----------
632
+ input_dim : int
633
+ The number of input dimensions
634
+ ls : scalar or array, optional
635
+ Lengthscale parameter :math:`\ell`; if `input_dim` > 1, a list or array of scalars.
636
+ If `input_dim` == 1, a scalar.
637
+ ls_inv : scalar or array, optional
638
+ Inverse lengthscale :math:`1 / \ell`. One of `ls` or `ls_inv` must be provided.
639
+ active_dims : list of int, optional
640
+ The dimension(s) the covariance function operates on.
627
641
"""
628
642
629
643
def full_from_distance (self , dist : TensorLike , squared : bool = False ) -> TensorVariable :
@@ -657,12 +671,26 @@ def power_spectral_density(self, omega: TensorLike) -> TensorVariable:
657
671
658
672
class Matern32 (Stationary ):
659
673
r"""
660
- The Matern kernel with nu = 3/2 .
674
+ The Matérn kernel with :math:`\ nu = \frac{3}{2}` .
661
675
662
676
.. math::
663
677
664
678
k(x, x') = \left(1 + \frac{\sqrt{3(x - x')^2}}{\ell}\right)
665
679
\mathrm{exp}\left[ - \frac{\sqrt{3(x - x')^2}}{\ell} \right]
680
+
681
+ Read more `here <https://en.wikipedia.org/wiki/Mat%C3%A9rn_covariance_function>`_.
682
+
683
+ Parameters
684
+ ----------
685
+ input_dim : int
686
+ The number of input dimensions
687
+ ls : scalar or array, optional
688
+ Lengthscale parameter :math:`\ell`; if `input_dim` > 1, a list or array of scalars.
689
+ If `input_dim` == 1, a scalar.
690
+ ls_inv : scalar or array, optional
691
+ Inverse lengthscale :math:`1 / \ell`. One of `ls` or `ls_inv` must be provided.
692
+ active_dims : list of int, optional
693
+ The dimension(s) the covariance function operates on.
666
694
"""
667
695
668
696
def full_from_distance (self , dist : TensorLike , squared : bool = False ) -> TensorVariable :
0 commit comments