Skip to content

Commit 9c30268

Browse files
committed
DOC Fix link to getting started guide. Close #1256.
1 parent ba7923b commit 9c30268

File tree

2 files changed

+145
-1
lines changed

2 files changed

+145
-1
lines changed

readme.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -23,7 +23,7 @@ PyMC3 is beta software. Users should consider using [PyMC 2 repository](https://
2323
* Transparent support for missing value imputation
2424

2525
## Getting started
26-
* The [PyMC3 tutorial](http://pymc-devs.github.io/pymc3/getting_started) or [journal publication](https://peerj.com/articles/cs-55/)
26+
* The [PyMC3 tutorial](http://pymc-devs.github.io/pymc3/notebooks/getting_started.html) or [journal publication](https://peerj.com/articles/cs-55/)
2727
* [PyMC3 examples](http://pymc-devs.github.io/pymc3/examples.html) and the [API reference](http://pymc-devs.github.io/pymc3/api.html)
2828
* [Bayesian Modelling in Python -- tutorials on Bayesian statistics and PyMC3 as Jupyter Notebooks by Mark Dregan](https://github.com/markdregan/Bayesian-Modelling-in-Python)
2929
* [Talk at PyData London 2016 on PyMC3](https://www.youtube.com/watch?v=LlzVlqVzeD8)

readme.rst

Lines changed: 144 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,144 @@
1+
PyMC3
2+
=====
3+
4+
|Gitter|
5+
6+
|Build Status|
7+
8+
PyMC3 is a python module for Bayesian statistical modeling and model
9+
fitting which focuses on advanced Markov chain Monte Carlo fitting
10+
algorithms. Its flexibility and extensibility make it applicable to a
11+
large suite of problems.
12+
13+
Check out the `getting started
14+
guide <http://pymc-devs.github.io/pymc3/notebooks/getting_started.html>`__!
15+
16+
PyMC3 is beta software. Users should consider using `PyMC 2
17+
repository <https://github.com/pymc-devs/pymc>`__.
18+
19+
Features
20+
--------
21+
22+
- Intuitive model specification syntax, for example, ``x ~ N(0,1)``
23+
translates to ``x = Normal(0,1)``
24+
- **Powerful sampling algorithms**, such as the `No U-Turn
25+
Sampler <http://arxiv.org/abs/1111.4246>`__, allow complex models
26+
with thousands of parameters with little specialized knowledge of
27+
fitting algorithms.
28+
- **Variational inference**: `ADVI <http://arxiv.org/abs/1506.03431>`__
29+
for fast approximate posterior estimation as well as mini-batch ADVI
30+
for large data sets.
31+
- Easy optimization for finding the *maximum a posteriori* (MAP) point
32+
- `Theano <http://deeplearning.net/software/theano/>`__ features
33+
- Numpy broadcasting and advanced indexing
34+
- Linear algebra operators
35+
- Computation optimization and dynamic C compilation
36+
- Simple extensibility
37+
- Transparent support for missing value imputation
38+
39+
Getting started
40+
---------------
41+
42+
- The `PyMC3
43+
tutorial <http://pymc-devs.github.io/pymc3/notebooks/getting_started.html>`__ or
44+
`journal publication <https://peerj.com/articles/cs-55/>`__
45+
- `PyMC3 examples <http://pymc-devs.github.io/pymc3/examples.html>`__
46+
and the `API reference <http://pymc-devs.github.io/pymc3/api.html>`__
47+
- `Bayesian Modelling in Python -- tutorials on Bayesian statistics and
48+
PyMC3 as Jupyter Notebooks by Mark
49+
Dregan <https://github.com/markdregan/Bayesian-Modelling-in-Python>`__
50+
- `Talk at PyData London 2016 on
51+
PyMC3 <https://www.youtube.com/watch?v=LlzVlqVzeD8>`__
52+
- `PyMC3 port of the models presented in the book "Doing Bayesian Data
53+
Analysis" by John
54+
Kruschke <https://github.com/aloctavodia/Doing_bayesian_data_analysis>`__
55+
- Coal Mining Disasters model in `PyMC
56+
2 <https://github.com/pymc-devs/pymc/blob/master/pymc/examples/disaster_model.py>`__
57+
and `PyMC
58+
3 <https://github.com/pymc-devs/pymc3/blob/master/pymc3/examples/disaster_model.py>`__
59+
60+
Installation
61+
------------
62+
63+
The latest version of PyMC3 can be installed from the master branch
64+
using pip:
65+
66+
::
67+
68+
pip install git+https://github.com/pymc-devs/pymc3
69+
70+
To ensure the development branch of Theano is installed alongside PyMC3
71+
(recommended), you can install PyMC3 using the ``requirements.txt``
72+
file. This requires cloning the repository to your computer:
73+
74+
::
75+
76+
git clone https://github.com/pymc-devs/pymc3
77+
cd pymc3
78+
pip install -r requirements.txt
79+
80+
However, if a recent version of Theano has already been installed on
81+
your system, you can install PyMC3 directly from GitHub.
82+
83+
Another option is to clone the repository and install PyMC3 using
84+
``python setup.py install`` or ``python setup.py develop``.
85+
86+
**Note:** Running ``pip install pymc`` will install PyMC 2.3, not PyMC3,
87+
from PyPI.
88+
89+
Dependencies
90+
------------
91+
92+
PyMC3 is tested on Python 2.7 and 3.3 and depends on Theano, NumPy,
93+
SciPy, Pandas, and Matplotlib (see ``requirements.txt`` for version
94+
information).
95+
96+
Optional
97+
~~~~~~~~
98+
99+
In addtion to the above dependencies, the GLM submodule relies on
100+
``Patsy``\ [http://patsy.readthedocs.io/en/latest/].
101+
102+
```scikits.sparse`` <https://github.com/njsmith/scikits-sparse>`__
103+
enables sparse scaling matrices which are useful for large problems.
104+
Installation on Ubuntu is easy:
105+
106+
::
107+
108+
sudo apt-get install libsuitesparse-dev
109+
pip install git+https://github.com/njsmith/scikits-sparse.git
110+
111+
On Mac OS X you can install libsuitesparse 4.2.1 via homebrew (see
112+
http://brew.sh/ to install homebrew), manually add a link so the include
113+
files are where scikits-sparse expects them, and then install
114+
scikits-sparse:
115+
116+
::
117+
118+
brew install suite-sparse
119+
ln -s /usr/local/Cellar/suite-sparse/4.2.1/include/ /usr/local/include/suitesparse
120+
pip install git+https://github.com/njsmith/scikits-sparse.git
121+
122+
Citing PyMC3
123+
------------
124+
125+
Salvatier J, Wiecki TV, Fonnesbeck C. (2016) Probabilistic programming
126+
in Python using PyMC3. PeerJ Computer Science 2:e55
127+
https://doi.org/10.7717/peerj-cs.55
128+
129+
License
130+
-------
131+
132+
`Apache License, Version
133+
2.0 <https://github.com/pymc-devs/pymc3/blob/master/LICENSE>`__
134+
135+
Contributors
136+
------------
137+
138+
See the `GitHub contributor
139+
page <https://github.com/pymc-devs/pymc3/graphs/contributors>`__
140+
141+
.. |Gitter| image:: https://badges.gitter.im/Join%20Chat.svg
142+
:target: https://gitter.im/pymc-devs/pymc?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge
143+
.. |Build Status| image:: https://travis-ci.org/pymc-devs/pymc3.png?branch=master
144+
:target: https://travis-ci.org/pymc-devs/pymc3

0 commit comments

Comments
 (0)