Skip to content

Commit a0aed9e

Browse files
committed
remove noise parameter completely
1 parent 127ac30 commit a0aed9e

File tree

1 file changed

+2
-33
lines changed

1 file changed

+2
-33
lines changed

pymc/gp/gp.py

Lines changed: 2 additions & 33 deletions
Original file line numberDiff line numberDiff line change
@@ -39,25 +39,6 @@
3939
__all__ = ["TP", "Latent", "LatentKron", "Marginal", "MarginalApprox", "MarginalKron"]
4040

4141

42-
_noise_deprecation_warning = (
43-
"The 'noise' parameter has been been changed to 'sigma' "
44-
"in order to standardize the GP API and will be "
45-
"deprecated in future releases."
46-
)
47-
48-
49-
def _handle_sigma_noise_parameters(sigma, noise):
50-
"""Help transition of 'noise' parameter to be named 'sigma'."""
51-
if (sigma is None and noise is None) or (sigma is not None and noise is not None):
52-
raise ValueError("'sigma' argument must be specified.")
53-
54-
if sigma is None:
55-
warnings.warn(_noise_deprecation_warning, FutureWarning)
56-
return noise
57-
58-
return sigma
59-
60-
6142
class Base:
6243
"""Base class."""
6344

@@ -505,8 +486,6 @@ def marginal_likelihood(
505486
sigma : float, Variable, or Covariance, default ~pymc.gp.cov.WhiteNoise
506487
Standard deviation of the Gaussian noise. Can also be a Covariance for
507488
non-white noise.
508-
noise : float, Variable, or Covariance, optional
509-
Deprecated. Previous parameterization of `sigma`.
510489
jitter : float, default 1e-6
511490
A small correction added to the diagonal of positive semi-definite
512491
covariance matrices to ensure numerical stability.
@@ -516,8 +495,6 @@ def marginal_likelihood(
516495
Extra keyword arguments that are passed to :class:`~pymc.MvNormal` distribution
517496
constructor.
518497
"""
519-
sigma = _handle_sigma_noise_parameters(sigma=sigma, noise=noise)
520-
521498
noise_func = sigma if isinstance(sigma, BaseCovariance) else pm.gp.cov.WhiteNoise(sigma)
522499
mu, cov = self._build_marginal_likelihood(X=X, noise_func=noise_func, jitter=jitter)
523500
self.X = X
@@ -544,10 +521,6 @@ def _get_given_vals(self, given):
544521
cov_total = self.cov_func
545522
mean_total = self.mean_func
546523

547-
if "noise" in given:
548-
warnings.warn(_noise_deprecation_warning, FutureWarning)
549-
given["sigma"] = given["noise"]
550-
551524
if all(val in given for val in ["X", "y", "sigma"]):
552525
X, y, sigma = given["X"], given["y"], given["sigma"]
553526
noise_func = sigma if isinstance(sigma, BaseCovariance) else pm.gp.cov.WhiteNoise(sigma)
@@ -804,9 +777,7 @@ def _build_marginal_likelihood_loglik(self, y, X, Xu, sigma, jitter):
804777
quadratic = 0.5 * (pt.dot(r, r_l) - pt.dot(c, c))
805778
return -1.0 * (constant + logdet + quadratic + trace)
806779

807-
def marginal_likelihood(
808-
self, name, X, Xu, y, sigma=None, noise=None, jitter=JITTER_DEFAULT, **kwargs
809-
):
780+
def marginal_likelihood(self, name, X, Xu, y, sigma=None, jitter=JITTER_DEFAULT, **kwargs):
810781
R"""
811782
Return the approximate marginal likelihood distribution.
812783
@@ -827,8 +798,6 @@ def marginal_likelihood(
827798
noise. Must have shape `(n, )`.
828799
sigma : float, Variable
829800
Standard deviation of the Gaussian noise.
830-
noise : float, Variable, optional
831-
Previous parameterization of `sigma`.
832801
jitter : float, default 1e-6
833802
A small correction added to the diagonal of positive semi-definite
834803
covariance matrices to ensure numerical stability.
@@ -840,7 +809,7 @@ def marginal_likelihood(
840809
self.Xu = Xu
841810
self.y = y
842811

843-
self.sigma = _handle_sigma_noise_parameters(sigma=sigma, noise=noise)
812+
self.sigma = sigma
844813

845814
approx_loglik = self._build_marginal_likelihood_loglik(
846815
y=self.y, X=self.X, Xu=self.Xu, sigma=self.sigma, jitter=jitter

0 commit comments

Comments
 (0)