|
11 | 11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 | 12 | # See the License for the specific language governing permissions and
|
13 | 13 | # limitations under the License.
|
| 14 | +import warnings |
14 | 15 |
|
| 16 | +import aesara |
15 | 17 | import numpy as np
|
16 | 18 | import pytest
|
17 | 19 | import scipy.stats as st
|
18 | 20 |
|
| 21 | +from aesara.graph import ancestors |
| 22 | +from aesara.tensor.random.op import RandomVariable |
| 23 | +from aesara.tensor.random.var import ( |
| 24 | + RandomGeneratorSharedVariable, |
| 25 | + RandomStateSharedVariable, |
| 26 | +) |
| 27 | +from aesara.tensor.sort import SortOp |
| 28 | + |
19 | 29 | import pymc as pm
|
20 | 30 |
|
| 31 | +from pymc import floatX |
21 | 32 | from pymc.initial_point import make_initial_point_fn
|
| 33 | +from pymc.smc.smc import IMH |
| 34 | +from pymc.tests.helpers import SeededTest |
| 35 | + |
| 36 | + |
| 37 | +class TestSimulator(SeededTest): |
| 38 | + @staticmethod |
| 39 | + def count_rvs(end_node): |
| 40 | + return len( |
| 41 | + [ |
| 42 | + node |
| 43 | + for node in ancestors([end_node]) |
| 44 | + if node.owner is not None and isinstance(node.owner.op, RandomVariable) |
| 45 | + ] |
| 46 | + ) |
| 47 | + |
| 48 | + @staticmethod |
| 49 | + def normal_sim(rng, a, b, size): |
| 50 | + return rng.normal(a, b, size=size) |
| 51 | + |
| 52 | + @staticmethod |
| 53 | + def abs_diff(eps, obs_data, sim_data): |
| 54 | + return np.mean(np.abs((obs_data - sim_data) / eps)) |
| 55 | + |
| 56 | + @staticmethod |
| 57 | + def quantiles(x): |
| 58 | + return np.quantile(x, [0.25, 0.5, 0.75]) |
| 59 | + |
| 60 | + def setup_class(self): |
| 61 | + super().setup_class() |
| 62 | + self.data = np.random.normal(loc=0, scale=1, size=1000) |
| 63 | + |
| 64 | + with pm.Model() as self.SMABC_test: |
| 65 | + a = pm.Normal("a", mu=0, sigma=1) |
| 66 | + b = pm.HalfNormal("b", sigma=1) |
| 67 | + s = pm.Simulator("s", self.normal_sim, a, b, sum_stat="sort", observed=self.data) |
| 68 | + self.s = s |
| 69 | + |
| 70 | + with pm.Model() as self.SMABC_potential: |
| 71 | + a = pm.Normal("a", mu=0, sigma=1, initval=0.5) |
| 72 | + b = pm.HalfNormal("b", sigma=1) |
| 73 | + c = pm.Potential("c", pm.math.switch(a > 0, 0, -np.inf)) |
| 74 | + s = pm.Simulator("s", self.normal_sim, a, b, observed=self.data) |
| 75 | + |
| 76 | + def test_one_gaussian(self): |
| 77 | + assert self.count_rvs(self.SMABC_test.logp()) == 1 |
| 78 | + |
| 79 | + with self.SMABC_test: |
| 80 | + trace = pm.sample_smc(draws=1000, chains=1, return_inferencedata=False) |
| 81 | + pr_p = pm.sample_prior_predictive(1000, return_inferencedata=False) |
| 82 | + po_p = pm.sample_posterior_predictive( |
| 83 | + trace, keep_size=False, return_inferencedata=False |
| 84 | + ) |
| 85 | + |
| 86 | + assert abs(self.data.mean() - trace["a"].mean()) < 0.05 |
| 87 | + assert abs(self.data.std() - trace["b"].mean()) < 0.05 |
| 88 | + |
| 89 | + assert pr_p["s"].shape == (1000, 1000) |
| 90 | + assert abs(0 - pr_p["s"].mean()) < 0.15 |
| 91 | + assert abs(1.4 - pr_p["s"].std()) < 0.10 |
| 92 | + |
| 93 | + assert po_p["s"].shape == (1000, 1000) |
| 94 | + assert abs(self.data.mean() - po_p["s"].mean()) < 0.10 |
| 95 | + assert abs(self.data.std() - po_p["s"].std()) < 0.10 |
| 96 | + |
| 97 | + @pytest.mark.parametrize("floatX", ["float32", "float64"]) |
| 98 | + def test_custom_dist_sum_stat(self, floatX): |
| 99 | + with aesara.config.change_flags(floatX=floatX): |
| 100 | + with pm.Model() as m: |
| 101 | + a = pm.Normal("a", mu=0, sigma=1) |
| 102 | + b = pm.HalfNormal("b", sigma=1) |
| 103 | + s = pm.Simulator( |
| 104 | + "s", |
| 105 | + self.normal_sim, |
| 106 | + a, |
| 107 | + b, |
| 108 | + distance=self.abs_diff, |
| 109 | + sum_stat=self.quantiles, |
| 110 | + observed=self.data, |
| 111 | + ) |
| 112 | + |
| 113 | + assert self.count_rvs(m.logp()) == 1 |
| 114 | + |
| 115 | + with m: |
| 116 | + with warnings.catch_warnings(): |
| 117 | + warnings.filterwarnings("ignore", "More chains .* than draws .*", UserWarning) |
| 118 | + pm.sample_smc(draws=100) |
| 119 | + |
| 120 | + @pytest.mark.parametrize("floatX", ["float32", "float64"]) |
| 121 | + def test_custom_dist_sum_stat_scalar(self, floatX): |
| 122 | + """ |
| 123 | + Test that automatically wrapped functions cope well with scalar inputs |
| 124 | + """ |
| 125 | + scalar_data = 5 |
| 126 | + |
| 127 | + with aesara.config.change_flags(floatX=floatX): |
| 128 | + with pm.Model() as m: |
| 129 | + s = pm.Simulator( |
| 130 | + "s", |
| 131 | + self.normal_sim, |
| 132 | + 0, |
| 133 | + 1, |
| 134 | + distance=self.abs_diff, |
| 135 | + sum_stat=self.quantiles, |
| 136 | + observed=scalar_data, |
| 137 | + ) |
| 138 | + assert self.count_rvs(m.logp()) == 1 |
| 139 | + |
| 140 | + with pm.Model() as m: |
| 141 | + s = pm.Simulator( |
| 142 | + "s", |
| 143 | + self.normal_sim, |
| 144 | + 0, |
| 145 | + 1, |
| 146 | + distance=self.abs_diff, |
| 147 | + sum_stat="mean", |
| 148 | + observed=scalar_data, |
| 149 | + ) |
| 150 | + assert self.count_rvs(m.logp()) == 1 |
| 151 | + |
| 152 | + def test_model_with_potential(self): |
| 153 | + assert self.count_rvs(self.SMABC_potential.logp()) == 1 |
| 154 | + |
| 155 | + with self.SMABC_potential: |
| 156 | + trace = pm.sample_smc(draws=100, chains=1, return_inferencedata=False) |
| 157 | + assert np.all(trace["a"] >= 0) |
| 158 | + |
| 159 | + def test_simulator_metropolis_mcmc(self): |
| 160 | + with self.SMABC_test as m: |
| 161 | + step = pm.Metropolis([m.rvs_to_values[m["a"]], m.rvs_to_values[m["b"]]]) |
| 162 | + trace = pm.sample(step=step, return_inferencedata=False) |
| 163 | + |
| 164 | + assert abs(self.data.mean() - trace["a"].mean()) < 0.05 |
| 165 | + assert abs(self.data.std() - trace["b"].mean()) < 0.05 |
| 166 | + |
| 167 | + def test_multiple_simulators(self): |
| 168 | + true_a = 2 |
| 169 | + true_b = -2 |
| 170 | + |
| 171 | + data1 = np.random.normal(true_a, 0.1, size=1000) |
| 172 | + data2 = np.random.normal(true_b, 0.1, size=1000) |
| 173 | + |
| 174 | + with pm.Model() as m: |
| 175 | + a = pm.Normal("a", mu=0, sigma=3) |
| 176 | + b = pm.Normal("b", mu=0, sigma=3) |
| 177 | + sim1 = pm.Simulator( |
| 178 | + "sim1", |
| 179 | + self.normal_sim, |
| 180 | + a, |
| 181 | + 0.1, |
| 182 | + distance="gaussian", |
| 183 | + sum_stat="sort", |
| 184 | + observed=data1, |
| 185 | + ) |
| 186 | + sim2 = pm.Simulator( |
| 187 | + "sim2", |
| 188 | + self.normal_sim, |
| 189 | + b, |
| 190 | + 0.1, |
| 191 | + distance="laplace", |
| 192 | + sum_stat="mean", |
| 193 | + epsilon=0.1, |
| 194 | + observed=data2, |
| 195 | + ) |
| 196 | + |
| 197 | + assert self.count_rvs(m.logp()) == 2 |
| 198 | + |
| 199 | + # Check that the logps use the correct methods |
| 200 | + a_val = m.rvs_to_values[a] |
| 201 | + sim1_val = m.rvs_to_values[sim1] |
| 202 | + logp_sim1 = pm.joint_logp(sim1, sim1_val) |
| 203 | + logp_sim1_fn = aesara.function([a_val], logp_sim1) |
| 204 | + |
| 205 | + b_val = m.rvs_to_values[b] |
| 206 | + sim2_val = m.rvs_to_values[sim2] |
| 207 | + logp_sim2 = pm.joint_logp(sim2, sim2_val) |
| 208 | + logp_sim2_fn = aesara.function([b_val], logp_sim2) |
| 209 | + |
| 210 | + assert any( |
| 211 | + node for node in logp_sim1_fn.maker.fgraph.toposort() if isinstance(node.op, SortOp) |
| 212 | + ) |
| 213 | + |
| 214 | + assert not any( |
| 215 | + node for node in logp_sim2_fn.maker.fgraph.toposort() if isinstance(node.op, SortOp) |
| 216 | + ) |
| 217 | + |
| 218 | + with m: |
| 219 | + trace = pm.sample_smc(return_inferencedata=False) |
| 220 | + |
| 221 | + assert abs(true_a - trace["a"].mean()) < 0.05 |
| 222 | + assert abs(true_b - trace["b"].mean()) < 0.05 |
| 223 | + |
| 224 | + def test_nested_simulators(self): |
| 225 | + true_a = 2 |
| 226 | + rng = self.get_random_state() |
| 227 | + data = rng.normal(true_a, 0.1, size=1000) |
| 228 | + |
| 229 | + with pm.Model() as m: |
| 230 | + sim1 = pm.Simulator( |
| 231 | + "sim1", |
| 232 | + self.normal_sim, |
| 233 | + params=(0, 4), |
| 234 | + distance="gaussian", |
| 235 | + sum_stat="identity", |
| 236 | + ) |
| 237 | + sim2 = pm.Simulator( |
| 238 | + "sim2", |
| 239 | + self.normal_sim, |
| 240 | + params=(sim1, 0.1), |
| 241 | + distance="gaussian", |
| 242 | + sum_stat="mean", |
| 243 | + epsilon=0.1, |
| 244 | + observed=data, |
| 245 | + ) |
| 246 | + |
| 247 | + assert self.count_rvs(m.logp()) == 2 |
| 248 | + |
| 249 | + with m: |
| 250 | + trace = pm.sample_smc(return_inferencedata=False) |
| 251 | + |
| 252 | + assert np.abs(true_a - trace["sim1"].mean()) < 0.1 |
| 253 | + |
| 254 | + def test_upstream_rngs_not_in_compiled_logp(self): |
| 255 | + smc = IMH(model=self.SMABC_test) |
| 256 | + smc.initialize_population() |
| 257 | + smc._initialize_kernel() |
| 258 | + likelihood_func = smc.likelihood_logp_func |
| 259 | + |
| 260 | + # Test graph is stochastic |
| 261 | + inarray = floatX(np.array([0, 0])) |
| 262 | + assert likelihood_func(inarray) != likelihood_func(inarray) |
| 263 | + |
| 264 | + # Test only one shared RNG is present |
| 265 | + compiled_graph = likelihood_func.maker.fgraph.outputs |
| 266 | + shared_rng_vars = [ |
| 267 | + node |
| 268 | + for node in ancestors(compiled_graph) |
| 269 | + if isinstance(node, (RandomStateSharedVariable, RandomGeneratorSharedVariable)) |
| 270 | + ] |
| 271 | + assert len(shared_rng_vars) == 1 |
| 272 | + |
| 273 | + def test_simulator_error_msg(self): |
| 274 | + msg = "The distance metric not_real is not implemented" |
| 275 | + with pytest.raises(ValueError, match=msg): |
| 276 | + with pm.Model() as m: |
| 277 | + sim = pm.Simulator("sim", self.normal_sim, 0, 1, distance="not_real") |
| 278 | + |
| 279 | + msg = "The summary statistic not_real is not implemented" |
| 280 | + with pytest.raises(ValueError, match=msg): |
| 281 | + with pm.Model() as m: |
| 282 | + sim = pm.Simulator("sim", self.normal_sim, 0, 1, sum_stat="not_real") |
| 283 | + |
| 284 | + msg = "Cannot pass both unnamed parameters and `params`" |
| 285 | + with pytest.raises(ValueError, match=msg): |
| 286 | + with pm.Model() as m: |
| 287 | + sim = pm.Simulator("sim", self.normal_sim, 0, params=(1)) |
| 288 | + |
| 289 | + @pytest.mark.xfail(reason="KL not refactored") |
| 290 | + def test_automatic_use_of_sort(self): |
| 291 | + with pm.Model() as model: |
| 292 | + s_k = pm.Simulator( |
| 293 | + "s_k", |
| 294 | + None, |
| 295 | + params=None, |
| 296 | + distance="kullback_leibler", |
| 297 | + sum_stat="sort", |
| 298 | + observed=self.data, |
| 299 | + ) |
| 300 | + assert s_k.distribution.sum_stat is pm.distributions.simulator.identity |
| 301 | + |
| 302 | + def test_name_is_string_type(self): |
| 303 | + with self.SMABC_potential: |
| 304 | + assert not self.SMABC_potential.name |
| 305 | + with warnings.catch_warnings(): |
| 306 | + warnings.filterwarnings("ignore", ".*number of samples.*", UserWarning) |
| 307 | + warnings.filterwarnings( |
| 308 | + "ignore", "invalid value encountered in true_divide", RuntimeWarning |
| 309 | + ) |
| 310 | + trace = pm.sample_smc(draws=10, chains=1, return_inferencedata=False) |
| 311 | + assert isinstance(trace._straces[0].name, str) |
| 312 | + |
| 313 | + def test_named_model(self): |
| 314 | + # Named models used to fail with Simulator because the arguments to the |
| 315 | + # random fn used to be passed by name. This is no longer true. |
| 316 | + # https://github.com/pymc-devs/pymc/pull/4365#issuecomment-761221146 |
| 317 | + name = "NamedModel" |
| 318 | + with pm.Model(name=name): |
| 319 | + a = pm.Normal("a", mu=0, sigma=1) |
| 320 | + b = pm.HalfNormal("b", sigma=1) |
| 321 | + s = pm.Simulator("s", self.normal_sim, a, b, observed=self.data) |
22 | 322 |
|
| 323 | + with warnings.catch_warnings(): |
| 324 | + warnings.filterwarnings("ignore", ".*number of samples.*", UserWarning) |
| 325 | + trace = pm.sample_smc(draws=10, chains=2, return_inferencedata=False) |
| 326 | + assert f"{name}::a" in trace.varnames |
| 327 | + assert f"{name}::b" in trace.varnames |
| 328 | + assert f"{name}::b_log__" in trace.varnames |
23 | 329 |
|
24 |
| -class TestMoments: |
25 | 330 | @pytest.mark.parametrize("mu", [0, np.arange(3)], ids=str)
|
26 | 331 | @pytest.mark.parametrize("sigma", [1, np.array([1, 2, 5])], ids=str)
|
27 | 332 | @pytest.mark.parametrize("size", [None, 3, (5, 3)], ids=str)
|
|
0 commit comments