@@ -845,8 +845,19 @@ class Lognormal(PositiveContinuous):
845
845
----------
846
846
mu : float
847
847
Location parameter.
848
+ sd : float
849
+ Standard deviation. (sd > 0). (only required if tau is not specified).
848
850
tau : float
849
- Scale parameter (tau > 0).
851
+ Scale parameter (tau > 0). (only required if sd is not specified).
852
+
853
+ Example
854
+ -------
855
+ # Example to show that we pass in only `sd` or `tau` but not both.
856
+ with pm.Model():
857
+ x = pm.Lognormal('x', mu=2, sd=30)
858
+
859
+ with pm.Model():
860
+ x = pm.Lognormal('x', mu=2, tau=1/100)
850
861
"""
851
862
852
863
def __init__ (self , mu = 0 , sd = None , tau = None , * args , ** kwargs ):
@@ -1596,9 +1607,19 @@ class HalfStudentT(PositiveContinuous):
1596
1607
Degrees of freedom, also known as normality parameter (nu > 0).
1597
1608
sd : float
1598
1609
Scale parameter (sd > 0). Converges to the standard deviation as nu
1599
- increases
1610
+ increases. (only required if lam is not specified)
1600
1611
lam : float
1601
- Scale parameter (lam > 0). Converges to the precision as nu increases
1612
+ Scale parameter (lam > 0). Converges to the precision as nu
1613
+ increases. (only required if sd is not specified)
1614
+
1615
+ Examples
1616
+ --------
1617
+ # Only pass in one of lam or sd, but not both.
1618
+ with pm.Model():
1619
+ x = pm.HalfStudentT('x', sd=10, nu=10)
1620
+
1621
+ with pm.Model():
1622
+ x = pm.HalfStudentT('x', lam=4, nu=10)
1602
1623
"""
1603
1624
def __init__ (self , nu = 1 , sd = None , lam = None , * args , ** kwargs ):
1604
1625
super (HalfStudentT , self ).__init__ (* args , ** kwargs )
0 commit comments