@@ -338,6 +338,7 @@ class Bernoulli(Discrete):
338
338
.. math:: f(x \mid p) = p^{x} (1-p)^{1-x}
339
339
340
340
.. plot::
341
+ :context: close-figs
341
342
342
343
import matplotlib.pyplot as plt
343
344
import numpy as np
@@ -367,9 +368,9 @@ class Bernoulli(Discrete):
367
368
368
369
Parameters
369
370
----------
370
- p: float
371
+ p : tensor_like of float
371
372
Probability of success (0 < p < 1).
372
- logit_p: float
373
+ logit_p : tensor_like of float
373
374
Alternative log odds for the probability of success.
374
375
"""
375
376
rv_op = bernoulli
@@ -569,6 +570,7 @@ class Poisson(Discrete):
569
570
.. math:: f(x \mid \mu) = \frac{e^{-\mu}\mu^x}{x!}
570
571
571
572
.. plot::
573
+ :context: close-figs
572
574
573
575
import matplotlib.pyplot as plt
574
576
import numpy as np
@@ -593,7 +595,7 @@ class Poisson(Discrete):
593
595
594
596
Parameters
595
597
----------
596
- mu: float
598
+ mu : tensor_like of float
597
599
Expected number of occurrences during the given interval
598
600
(mu >= 0).
599
601
@@ -686,6 +688,7 @@ class NegativeBinomial(Discrete):
686
688
(\alpha/(\mu+\alpha))^\alpha (\mu/(\mu+\alpha))^x
687
689
688
690
.. plot::
691
+ :context: close-figs
689
692
690
693
import matplotlib.pyplot as plt
691
694
import numpy as np
@@ -733,13 +736,13 @@ def NegBinom(a, m, x):
733
736
734
737
Parameters
735
738
----------
736
- alpha: float
739
+ alpha : tensor_like of float
737
740
Gamma distribution shape parameter (alpha > 0).
738
- mu: float
741
+ mu : tensor_like of float
739
742
Gamma distribution mean (mu > 0).
740
- p: float
743
+ p : tensor_like of float
741
744
Alternative probability of success in each trial (0 < p < 1).
742
- n: float
745
+ n : tensor_like of float
743
746
Alternative number of target success trials (n > 0)
744
747
"""
745
748
rv_op = nbinom
@@ -854,6 +857,7 @@ class Geometric(Discrete):
854
857
.. math:: f(x \mid p) = p(1-p)^{x-1}
855
858
856
859
.. plot::
860
+ :context: close-figs
857
861
858
862
import matplotlib.pyplot as plt
859
863
import numpy as np
@@ -877,7 +881,7 @@ class Geometric(Discrete):
877
881
878
882
Parameters
879
883
----------
880
- p: float
884
+ p : tensor_like of float
881
885
Probability of success on an individual trial (0 < p <= 1).
882
886
"""
883
887
@@ -963,6 +967,7 @@ class HyperGeometric(Discrete):
963
967
.. math:: f(x \mid N, n, k) = \frac{\binom{k}{x}\binom{N-k}{n-x}}{\binom{N}{n}}
964
968
965
969
.. plot::
970
+ :context: close-figs
966
971
967
972
import matplotlib.pyplot as plt
968
973
import numpy as np
0 commit comments