@@ -707,11 +707,11 @@ class DEMetropolis(PopulationArrayStepShared):
707
707
Some measure of variance to parameterize proposal distribution
708
708
proposal_dist: function
709
709
Function that returns zero-mean deviates when parameterized with
710
- S (and n). Defaults to Uniform(-S,+ S).
710
+ S (and n). Defaults to NormalProposal( S).
711
711
scaling: scalar or array
712
712
Initial scale factor for epsilon. Defaults to 0.001
713
713
tune: str
714
- Which hyperparameter to tune. Defaults to None , but can also be 'scaling ' or 'lambda' .
714
+ Which hyperparameter to tune. Defaults to 'scaling' , but can also be 'lambda ' or None .
715
715
tune_interval: int
716
716
The frequency of tuning. Defaults to 100 iterations.
717
717
model: PyMC Model
@@ -748,7 +748,7 @@ def __init__(
748
748
proposal_dist = None ,
749
749
lamb = None ,
750
750
scaling = 0.001 ,
751
- tune = None ,
751
+ tune : Optional [ str ] = "scaling" ,
752
752
tune_interval = 100 ,
753
753
model = None ,
754
754
mode = None ,
@@ -770,7 +770,7 @@ def __init__(
770
770
if proposal_dist is not None :
771
771
self .proposal_dist = proposal_dist (S )
772
772
else :
773
- self .proposal_dist = UniformProposal (S )
773
+ self .proposal_dist = NormalProposal (S )
774
774
775
775
self .scaling = np .atleast_1d (scaling ).astype ("d" )
776
776
if lamb is None :
@@ -851,11 +851,11 @@ class DEMetropolisZ(ArrayStepShared):
851
851
Some measure of variance to parameterize proposal distribution
852
852
proposal_dist: function
853
853
Function that returns zero-mean deviates when parameterized with
854
- S (and n). Defaults to Uniform(-S,+ S).
854
+ S (and n). Defaults to NormalProposal( S).
855
855
scaling: scalar or array
856
856
Initial scale factor for epsilon. Defaults to 0.001
857
857
tune: str
858
- Which hyperparameter to tune. Defaults to 'lambda ', but can also be 'scaling ' or None.
858
+ Which hyperparameter to tune. Defaults to 'scaling ', but can also be 'lambda ' or None.
859
859
tune_interval: int
860
860
The frequency of tuning. Defaults to 100 iterations.
861
861
tune_drop_fraction: float
@@ -869,7 +869,7 @@ class DEMetropolisZ(ArrayStepShared):
869
869
870
870
References
871
871
----------
872
- .. [Braak2006 ] Cajo C.F. ter Braak (2006 ).
872
+ .. [Braak2008 ] Cajo C.F. ter Braak (2008 ).
873
873
Differential Evolution Markov Chain with snooker updater and fewer chains.
874
874
Statistics and Computing
875
875
`link <https://doi.org/10.1007/s11222-008-9104-9>`__
@@ -895,7 +895,7 @@ def __init__(
895
895
proposal_dist = None ,
896
896
lamb = None ,
897
897
scaling = 0.001 ,
898
- tune = "lambda " ,
898
+ tune : Optional [ str ] = "scaling " ,
899
899
tune_interval = 100 ,
900
900
tune_drop_fraction : float = 0.9 ,
901
901
model = None ,
@@ -917,7 +917,7 @@ def __init__(
917
917
if proposal_dist is not None :
918
918
self .proposal_dist = proposal_dist (S )
919
919
else :
920
- self .proposal_dist = UniformProposal (S )
920
+ self .proposal_dist = NormalProposal (S )
921
921
922
922
self .scaling = np .atleast_1d (scaling ).astype ("d" )
923
923
if lamb is None :
0 commit comments