|
57 | 57 |
|
58 | 58 |
|
59 | 59 | class MarginalMixtureRV(SymbolicRandomVariable): |
60 | | - """A placeholder used to specify a log-likelihood for a mixture sub-graph.""" |
| 60 | + """A placeholder used to specify a distribution for a mixture sub-graph.""" |
61 | 61 |
|
62 | 62 | _print_name = ("MarginalMixture", "\\operatorname{MarginalMixture}") |
63 | 63 |
|
@@ -163,7 +163,7 @@ def update(self, node: Apply): |
163 | 163 |
|
164 | 164 | class Mixture(Distribution): |
165 | 165 | R""" |
166 | | - Mixture log-likelihood. |
| 166 | + Mixture distribution. |
167 | 167 |
|
168 | 168 | Often used to model subpopulation heterogeneity |
169 | 169 |
|
@@ -493,7 +493,7 @@ def mixture_args_fn(rng, weights, *components): |
493 | 493 |
|
494 | 494 | class NormalMixture: |
495 | 495 | R""" |
496 | | - Normal mixture log-likelihood. |
| 496 | + Normal mixture distribution. |
497 | 497 |
|
498 | 498 | .. math:: |
499 | 499 |
|
@@ -573,7 +573,7 @@ def _zero_inflated_mixture(*, name, nonzero_p, nonzero_dist, **kwargs): |
573 | 573 |
|
574 | 574 | class ZeroInflatedPoisson: |
575 | 575 | R""" |
576 | | - Zero-inflated Poisson log-likelihood. |
| 576 | + Zero-inflated Poisson distribution. |
577 | 577 |
|
578 | 578 | Often used to model the number of events occurring in a fixed period |
579 | 579 | of time when the times at which events occur are independent. |
@@ -637,7 +637,7 @@ def dist(cls, psi, mu, **kwargs): |
637 | 637 |
|
638 | 638 | class ZeroInflatedBinomial: |
639 | 639 | R""" |
640 | | - Zero-inflated Binomial log-likelihood. |
| 640 | + Zero-inflated Binomial distribution. |
641 | 641 |
|
642 | 642 | The pmf of this distribution is |
643 | 643 |
|
@@ -701,7 +701,7 @@ def dist(cls, psi, n, p, **kwargs): |
701 | 701 |
|
702 | 702 | class ZeroInflatedNegativeBinomial: |
703 | 703 | R""" |
704 | | - Zero-Inflated Negative binomial log-likelihood. |
| 704 | + Zero-Inflated Negative binomial distribution. |
705 | 705 |
|
706 | 706 | The Zero-inflated version of the Negative Binomial (NB). |
707 | 707 | The NB distribution describes a Poisson random variable |
@@ -831,7 +831,7 @@ def _hurdle_mixture(*, name, nonzero_p, nonzero_dist, dtype, max_n_steps=10_000, |
831 | 831 |
|
832 | 832 | class HurdlePoisson: |
833 | 833 | R""" |
834 | | - Hurdle Poisson log-likelihood. |
| 834 | + Hurdle Poisson distribution. |
835 | 835 |
|
836 | 836 | The Poisson distribution is often used to model the number of events occurring |
837 | 837 | in a fixed period of time or space when the times or locations |
@@ -877,7 +877,7 @@ def dist(cls, psi, mu, **kwargs): |
877 | 877 |
|
878 | 878 | class HurdleNegativeBinomial: |
879 | 879 | R""" |
880 | | - Hurdle Negative Binomial log-likelihood. |
| 880 | + Hurdle Negative Binomial distribution. |
881 | 881 |
|
882 | 882 | The negative binomial distribution describes a Poisson random variable |
883 | 883 | whose rate parameter is gamma distributed. |
@@ -935,7 +935,7 @@ def dist(cls, psi, mu=None, alpha=None, p=None, n=None, **kwargs): |
935 | 935 |
|
936 | 936 | class HurdleGamma: |
937 | 937 | R""" |
938 | | - Hurdle Gamma log-likelihood. |
| 938 | + Hurdle Gamma distribution. |
939 | 939 |
|
940 | 940 | .. math:: |
941 | 941 |
|
@@ -987,7 +987,7 @@ def dist(cls, psi, alpha=None, beta=None, mu=None, sigma=None, **kwargs): |
987 | 987 |
|
988 | 988 | class HurdleLogNormal: |
989 | 989 | R""" |
990 | | - Hurdle LogNormal log-likelihood. |
| 990 | + Hurdle LogNormal distribution. |
991 | 991 |
|
992 | 992 | .. math:: |
993 | 993 |
|
|
0 commit comments