|
| 1 | +# Copyright 2024 The PyMC Developers |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | +from collections.abc import Sequence |
| 15 | +from typing import Optional, cast |
| 16 | + |
| 17 | +from arviz import InferenceData, dict_to_dataset |
| 18 | +from fastprogress import progress_bar |
| 19 | + |
| 20 | +import pymc |
| 21 | + |
| 22 | +from pymc.backends.arviz import _DefaultTrace, coords_and_dims_for_inferencedata |
| 23 | +from pymc.model import Model, modelcontext |
| 24 | +from pymc.pytensorf import PointFunc |
| 25 | +from pymc.util import dataset_to_point_list |
| 26 | + |
| 27 | + |
| 28 | +def compute_log_prior( |
| 29 | + idata: InferenceData, |
| 30 | + var_names: Optional[Sequence[str]] = None, |
| 31 | + extend_inferencedata: bool = True, |
| 32 | + model: Optional[Model] = None, |
| 33 | + sample_dims: Sequence[str] = ("chain", "draw"), |
| 34 | + progressbar=True, |
| 35 | +): |
| 36 | + """Compute elemwise log_prior of model given InferenceData with posterior group |
| 37 | +
|
| 38 | + Parameters |
| 39 | + ---------- |
| 40 | + idata : InferenceData |
| 41 | + InferenceData with posterior group |
| 42 | + var_names : sequence of str, optional |
| 43 | + List of Observed variable names for which to compute log_prior. |
| 44 | + Defaults to all all free variables. |
| 45 | + extend_inferencedata : bool, default True |
| 46 | + Whether to extend the original InferenceData or return a new one |
| 47 | + model : Model, optional |
| 48 | + sample_dims : sequence of str, default ("chain", "draw") |
| 49 | + progressbar : bool, default True |
| 50 | +
|
| 51 | + Returns |
| 52 | + ------- |
| 53 | + idata : InferenceData |
| 54 | + InferenceData with log_prior group |
| 55 | + """ |
| 56 | + return compute_log_density( |
| 57 | + idata=idata, |
| 58 | + var_names=var_names, |
| 59 | + extend_inferencedata=extend_inferencedata, |
| 60 | + model=model, |
| 61 | + kind="prior", |
| 62 | + sample_dims=sample_dims, |
| 63 | + progressbar=progressbar, |
| 64 | + ) |
| 65 | + |
| 66 | + |
| 67 | +def compute_log_density( |
| 68 | + idata: InferenceData, |
| 69 | + *, |
| 70 | + var_names: Optional[Sequence[str]] = None, |
| 71 | + extend_inferencedata: bool = True, |
| 72 | + model: Optional[Model] = None, |
| 73 | + kind="likelihood", |
| 74 | + sample_dims: Sequence[str] = ("chain", "draw"), |
| 75 | + progressbar=True, |
| 76 | +): |
| 77 | + """ |
| 78 | + Compute elemwise log_likelihood or log_prior of model given InferenceData with posterior group |
| 79 | + """ |
| 80 | + |
| 81 | + posterior = idata["posterior"] |
| 82 | + |
| 83 | + model = modelcontext(model) |
| 84 | + |
| 85 | + if kind not in ("likelihood", "prior"): |
| 86 | + raise ValueError("kind must be either 'likelihood' or 'prior'") |
| 87 | + |
| 88 | + if kind == "likelihood": |
| 89 | + target_rvs = model.observed_RVs |
| 90 | + target_str = "observed_RVs" |
| 91 | + else: |
| 92 | + target_rvs = model.unobserved_RVs |
| 93 | + target_str = "free_RVs" |
| 94 | + |
| 95 | + if var_names is None: |
| 96 | + vars = target_rvs |
| 97 | + var_names = tuple(rv.name for rv in vars) |
| 98 | + else: |
| 99 | + vars = [model.named_vars[name] for name in var_names] |
| 100 | + if not set(vars).issubset(target_rvs): |
| 101 | + raise ValueError(f"var_names must refer to {target_str} in the model. Got: {var_names}") |
| 102 | + |
| 103 | + # We need to temporarily disable transforms, because the InferenceData only keeps the untransformed values |
| 104 | + try: |
| 105 | + original_rvs_to_values = model.rvs_to_values |
| 106 | + original_rvs_to_transforms = model.rvs_to_transforms |
| 107 | + |
| 108 | + model.rvs_to_values = { |
| 109 | + rv: rv.clone() if rv not in model.observed_RVs else value |
| 110 | + for rv, value in model.rvs_to_values.items() |
| 111 | + } |
| 112 | + model.rvs_to_transforms = {rv: None for rv in model.basic_RVs} |
| 113 | + |
| 114 | + elemwise_logdens_fn = model.compile_fn( |
| 115 | + inputs=model.value_vars, |
| 116 | + outs=model.logp(vars=vars, sum=False), |
| 117 | + on_unused_input="ignore", |
| 118 | + ) |
| 119 | + elemwise_logdens_fn = cast(PointFunc, elemwise_logdens_fn) |
| 120 | + finally: |
| 121 | + model.rvs_to_values = original_rvs_to_values |
| 122 | + model.rvs_to_transforms = original_rvs_to_transforms |
| 123 | + |
| 124 | + # Ignore Deterministics |
| 125 | + posterior_values = posterior[[rv.name for rv in model.free_RVs]] |
| 126 | + posterior_pts, stacked_dims = dataset_to_point_list(posterior_values, sample_dims) |
| 127 | + |
| 128 | + n_pts = len(posterior_pts) |
| 129 | + logdens_dict = _DefaultTrace(n_pts) |
| 130 | + indices = range(n_pts) |
| 131 | + if progressbar: |
| 132 | + indices = progress_bar(indices, total=n_pts, display=progressbar) |
| 133 | + |
| 134 | + for idx in indices: |
| 135 | + logdenss_pts = elemwise_logdens_fn(posterior_pts[idx]) |
| 136 | + for rv_name, rv_logdens in zip(var_names, logdenss_pts): |
| 137 | + logdens_dict.insert(rv_name, rv_logdens, idx) |
| 138 | + |
| 139 | + logdens_trace = logdens_dict.trace_dict |
| 140 | + for key, array in logdens_trace.items(): |
| 141 | + logdens_trace[key] = array.reshape( |
| 142 | + (*[len(coord) for coord in stacked_dims.values()], *array.shape[1:]) |
| 143 | + ) |
| 144 | + |
| 145 | + coords, dims = coords_and_dims_for_inferencedata(model) |
| 146 | + logdens_dataset = dict_to_dataset( |
| 147 | + logdens_trace, |
| 148 | + library=pymc, |
| 149 | + dims=dims, |
| 150 | + coords=coords, |
| 151 | + default_dims=list(sample_dims), |
| 152 | + skip_event_dims=True, |
| 153 | + ) |
| 154 | + |
| 155 | + if extend_inferencedata: |
| 156 | + idata.add_groups({f"log_{kind}": logdens_dataset}) |
| 157 | + return idata |
| 158 | + else: |
| 159 | + return logdens_dataset |
0 commit comments