@@ -32,13 +32,16 @@ class ArrayStep(BlockedStep):
3232
3333 Parameters
3434 ----------
35- vars: list
35+ vars : list
3636 List of value variables for sampler.
37- fs: list of logp PyTensor functions
38- allvars: Boolean (default False)
39- blocked: Boolean (default True)
40- rng: RandomGenerator
41- An object that can produce be used to produce the step method's
37+ fs : list
38+ Logp PyTensor functions.
39+ allvars : bool, default False
40+ Whether to pass all model variables to the logp functions.
41+ blocked : bool, default True
42+ Whether variables are updated jointly or separately.
43+ rng : RandomGenerator
44+ An object that can be used to produce the step method's
4245 :py:class:`~numpy.random.Generator` object. Refer to
4346 :py:func:`pymc.util.get_random_generator` for more information.
4447 """
@@ -90,11 +93,14 @@ def __init__(self, vars, shared, blocked=True, rng: RandomGenerator = None):
9093
9194 Parameters
9295 ----------
93- vars: list of sampling value variables
94- shared: dict of PyTensor variable -> shared variable
95- blocked: Boolean (default True)
96- rng: RandomGenerator
97- An object that can produce be used to produce the step method's
96+ vars : list
97+ Sampling value variables.
98+ shared : dict
99+ PyTensor variable -> shared variable.
100+ blocked : bool, default True
101+ Whether variables are updated jointly or separately.
102+ rng : RandomGenerator
103+ An object that can be used to produce the step method's
98104 :py:class:`~numpy.random.Generator` object. Refer to
99105 :py:func:`pymc.util.get_random_generator` for more information.
100106 """
@@ -138,11 +144,14 @@ def __init__(self, vars, shared, blocked=True, rng: RandomGenerator = None):
138144
139145 Parameters
140146 ----------
141- vars: list of sampling value variables
142- shared: dict of PyTensor variable -> shared variable
143- blocked: Boolean (default True)
144- rng: RandomGenerator
145- An object that can produce be used to produce the step method's
147+ vars : list
148+ Sampling value variables.
149+ shared : dict
150+ PyTensor variable -> shared variable.
151+ blocked : bool, default True
152+ Whether variables are updated jointly or separately.
153+ rng : RandomGenerator
154+ An object that can be used to produce the step method's
146155 :py:class:`~numpy.random.Generator` object. Refer to
147156 :py:func:`pymc.util.get_random_generator` for more information.
148157 """
@@ -156,9 +165,11 @@ def link_population(self, population, chain_index):
156165
157166 Parameters
158167 ----------
159- population: list of Points. (The elements of this list must be
160- replaced with current chain states in every iteration.)
161- chain_index: int of the index of this sampler in the population
168+ population : list of Points
169+ The elements of this list must be replaced with current chain
170+ states in every iteration.
171+ chain_index : int
172+ The index of this sampler in the population.
162173 """
163174 self .population = population
164175 self .this_chain = chain_index
@@ -216,15 +227,21 @@ def metrop_select(
216227
217228 Parameters
218229 ----------
219- mr: float, Metropolis acceptance rate
220- q: proposed sample
221- q0: current sample
222- rng: numpy.random.Generator
223- A random number generator object
230+ mr : float
231+ Metropolis acceptance rate.
232+ q : np.ndarray
233+ Proposed sample.
234+ q0 : np.ndarray
235+ Current sample.
236+ rng : numpy.random.Generator
237+ A random number generator object.
224238
225239 Returns
226240 -------
227- q or q0
241+ np.ndarray
242+ The accepted sample (`q` or `q0`).
243+ bool
244+ Whether the proposed `q` was accepted.
228245 """
229246 # Compare acceptance ratio to uniform random number
230247 # TODO XXX: This `uniform` is not given a model-specific RNG state, which
0 commit comments