@@ -189,30 +189,6 @@ def parametric_grouped_approxes(request):
189
189
return request .param
190
190
191
191
192
- @pytest .fixture
193
- def three_var_aevb_groups (parametric_grouped_approxes , three_var_model , aevb_initial ):
194
- one_initial_value = three_var_model .initial_point (0 )[three_var_model .one .tag .value_var .name ]
195
- dsize = np .prod (one_initial_value .shape [1 :])
196
- cls , kw = parametric_grouped_approxes
197
- spec = cls .get_param_spec_for (d = dsize , ** kw )
198
- params = dict ()
199
- for k , v in spec .items ():
200
- if isinstance (k , int ):
201
- params [k ] = dict ()
202
- for k_i , v_i in v .items ():
203
- params [k ][k_i ] = aevb_initial .dot (np .random .rand (7 , * v_i ).astype ("float32" ))
204
- else :
205
- params [k ] = aevb_initial .dot (np .random .rand (7 , * v ).astype ("float32" ))
206
- aevb_g = cls ([three_var_model .one ], params = params , model = three_var_model , local = True )
207
- return [aevb_g , MeanFieldGroup (None , model = three_var_model )]
208
-
209
-
210
- @pytest .fixture
211
- def three_var_aevb_approx (three_var_model , three_var_aevb_groups ):
212
- approx = Approximation (three_var_aevb_groups , model = three_var_model )
213
- return approx
214
-
215
-
216
192
def test_logq_mini_1_sample_1_var (parametric_grouped_approxes , three_var_model ):
217
193
cls , kw = parametric_grouped_approxes
218
194
approx = cls ([three_var_model .one ], model = three_var_model , ** kw )
0 commit comments