@@ -818,9 +818,10 @@ class HalfNormal(PositiveContinuous):
818
818
the standard deviation/precision of the unfolded normal distribution, for
819
819
the standard deviation of the half-normal distribution, see below. For
820
820
the half-normal, they are just two parameterisation :math:`\sigma^2
821
- \equiv \frac{1}{\tau}` of a scale parameter
821
+ \equiv \frac{1}{\tau}` of a scale parameter.
822
822
823
823
.. plot::
824
+ :context: close-figs
824
825
825
826
import matplotlib.pyplot as plt
826
827
import numpy as np
@@ -844,10 +845,12 @@ class HalfNormal(PositiveContinuous):
844
845
845
846
Parameters
846
847
----------
847
- sigma: float
848
- Scale parameter :math:`sigma` (``sigma`` > 0) (only required if ``tau`` is not specified).
849
- tau: float
850
- Precision :math:`tau` (tau > 0) (only required if sigma is not specified).
848
+ sigma : tensor_like of float, optional
849
+ Scale parameter :math:`\sigma` (``sigma`` > 0) (only required if ``tau`` is not specified).
850
+ Defaults to 1.
851
+ tau : tensor_like of float, optional
852
+ Precision :math:`\tau` (tau > 0) (only required if sigma is not specified).
853
+ Defaults to 1.
851
854
852
855
Examples
853
856
--------
@@ -883,7 +886,7 @@ def logcdf(value, loc, sigma):
883
886
884
887
Parameters
885
888
----------
886
- value: numeric or np.ndarray or aesara.tensor
889
+ value : tensor_like of float
887
890
Value(s) for which log CDF is calculated. If the log CDF for multiple
888
891
values are desired the values must be provided in a numpy array or Aesara tensor.
889
892
@@ -935,6 +938,7 @@ class Wald(PositiveContinuous):
935
938
\right\}
936
939
937
940
.. plot::
941
+ :context: close-figs
938
942
939
943
import matplotlib.pyplot as plt
940
944
import numpy as np
@@ -967,13 +971,13 @@ class Wald(PositiveContinuous):
967
971
968
972
Parameters
969
973
----------
970
- mu: float, optional
974
+ mu : tensor_like of float, optional
971
975
Mean of the distribution (mu > 0).
972
- lam: float, optional
976
+ lam : tensor_like of float, optional
973
977
Relative precision (lam > 0).
974
- phi: float, optional
978
+ phi : tensor_like of float, optional
975
979
Alternative shape parameter (phi > 0).
976
- alpha: float, optional
980
+ alpha : tensor_like of float, default 0
977
981
Shift/location parameter (alpha >= 0).
978
982
979
983
Notes
@@ -1060,14 +1064,14 @@ def logp(
1060
1064
1061
1065
Parameters
1062
1066
----------
1063
- value: numeric
1067
+ value : tensor_like of float
1064
1068
Value(s) for which log-probability is calculated. If the log probabilities for multiple
1065
- values are desired the values must be provided in a numpy array or Aesara tensor
1066
- mu: float or TensorVariable
1069
+ values are desired the values must be provided in a numpy array or Aesara tensor.
1070
+ mu : tensor_like of float
1067
1071
Mean of the distribution (mu > 0).
1068
- lam: float or TensorVariable
1072
+ lam : tensor_like of float
1069
1073
Relative precision (lam > 0).
1070
- alpha: float or TensorVariable
1074
+ alpha : tensor_like of float
1071
1075
Shift/location parameter (alpha >= 0).
1072
1076
1073
1077
Returns
@@ -1105,14 +1109,14 @@ def logcdf(
1105
1109
1106
1110
Parameters
1107
1111
----------
1108
- value: numeric or np.ndarray or aesara.tensor
1112
+ value : tensor_like of float
1109
1113
Value(s) for which log CDF is calculated. If the log CDF for multiple
1110
1114
values are desired the values must be provided in a numpy array or Aesara tensor.
1111
- mu: float or TensorVariable
1115
+ mu : tensor_like of float
1112
1116
Mean of the distribution (mu > 0).
1113
- lam: float or TensorVariable
1117
+ lam : tensor_like of float
1114
1118
Relative precision (lam > 0).
1115
- alpha: float or TensorVariable
1119
+ alpha : tensor_like of float
1116
1120
Shift/location parameter (alpha >= 0).
1117
1121
1118
1122
Returns
@@ -1982,6 +1986,7 @@ class Pareto(BoundedContinuous):
1982
1986
f(x \mid \alpha, m) = \frac{\alpha m^{\alpha}}{x^{\alpha+1}}
1983
1987
1984
1988
.. plot::
1989
+ :context: close-figs
1985
1990
1986
1991
import matplotlib.pyplot as plt
1987
1992
import numpy as np
@@ -2008,9 +2013,9 @@ class Pareto(BoundedContinuous):
2008
2013
2009
2014
Parameters
2010
2015
----------
2011
- alpha: float
2016
+ alpha : tensor_like of float
2012
2017
Shape parameter (alpha > 0).
2013
- m: float
2018
+ m : tensor_like of float
2014
2019
Scale parameter (m > 0).
2015
2020
"""
2016
2021
rv_op = pareto
@@ -2045,7 +2050,7 @@ def logcdf(
2045
2050
2046
2051
Parameters
2047
2052
----------
2048
- value: numeric or np.ndarray or aesara.tensor
2053
+ value : tensor_like of float
2049
2054
Value(s) for which log CDF is calculated. If the log CDF for multiple
2050
2055
values are desired the values must be provided in a numpy array or Aesara tensor.
2051
2056
@@ -2493,6 +2498,7 @@ class ChiSquared(PositiveContinuous):
2493
2498
f(x \mid \nu) = \frac{x^{(\nu-2)/2}e^{-x/2}}{2^{\nu/2}\Gamma(\nu/2)}
2494
2499
2495
2500
.. plot::
2501
+ :context: close-figs
2496
2502
2497
2503
import matplotlib.pyplot as plt
2498
2504
import numpy as np
@@ -2517,7 +2523,7 @@ class ChiSquared(PositiveContinuous):
2517
2523
2518
2524
Parameters
2519
2525
----------
2520
- nu: float
2526
+ nu : tensor_like of float
2521
2527
Degrees of freedom (nu > 0).
2522
2528
"""
2523
2529
rv_op = chisquare
@@ -2540,10 +2546,11 @@ def logcdf(value, nu):
2540
2546
2541
2547
Parameters
2542
2548
----------
2543
- value: numeric or np.ndarray or `TensorVariable`
2549
+ value : tensor_like of float
2544
2550
Value(s) for which log CDF is calculated. If the log CDF for
2545
2551
multiple values are desired the values must be provided in a numpy
2546
- array or `TensorVariable`.
2552
+ array or Aesara tensor.
2553
+
2547
2554
Returns
2548
2555
-------
2549
2556
TensorVariable
@@ -2813,6 +2820,7 @@ class ExGaussian(Continuous):
2813
2820
standard normal distribution.
2814
2821
2815
2822
.. plot::
2823
+ :context: close-figs
2816
2824
2817
2825
import matplotlib.pyplot as plt
2818
2826
import numpy as np
@@ -2839,11 +2847,11 @@ class ExGaussian(Continuous):
2839
2847
2840
2848
Parameters
2841
2849
----------
2842
- mu: float
2850
+ mu : tensor_like of float, default 0
2843
2851
Mean of the normal distribution.
2844
- sigma: float
2852
+ sigma : tensor_like of float
2845
2853
Standard deviation of the normal distribution (sigma > 0).
2846
- nu: float
2854
+ nu : tensor_like of float
2847
2855
Mean of the exponential distribution (nu > 0).
2848
2856
2849
2857
References
@@ -2884,9 +2892,9 @@ def logp(value, mu, sigma, nu):
2884
2892
2885
2893
Parameters
2886
2894
----------
2887
- value: numeric
2895
+ value : tensor_like of float
2888
2896
Value(s) for which log-probability is calculated. If the log probabilities for multiple
2889
- values are desired the values must be provided in a numpy array or Aesara tensor
2897
+ values are desired the values must be provided in a numpy array or Aesara tensor.
2890
2898
2891
2899
Returns
2892
2900
-------
@@ -2924,7 +2932,7 @@ def logcdf(value, mu, sigma, nu):
2924
2932
2925
2933
Parameters
2926
2934
----------
2927
- value: numeric or np.ndarray or aesara.tensor
2935
+ value : tensor_like of float
2928
2936
Value(s) for which log CDF is calculated. If the log CDF for multiple
2929
2937
values are desired the values must be provided in a numpy array or Aesara tensor.
2930
2938
@@ -2964,6 +2972,7 @@ class VonMises(CircularContinuous):
2964
2972
where :math:`I_0` is the modified Bessel function of order 0.
2965
2973
2966
2974
.. plot::
2975
+ :context: close-figs
2967
2976
2968
2977
import matplotlib.pyplot as plt
2969
2978
import numpy as np
@@ -2989,9 +2998,9 @@ class VonMises(CircularContinuous):
2989
2998
2990
2999
Parameters
2991
3000
----------
2992
- mu: float
3001
+ mu : tensor_like of float, default 0
2993
3002
Mean.
2994
- kappa: float
3003
+ kappa : tensor_like of float
2995
3004
Concentration (\frac{1}{kappa} is analogous to \sigma^2).
2996
3005
"""
2997
3006
0 commit comments