-
Notifications
You must be signed in to change notification settings - Fork 2.1k
Closed
Labels
Description
Describe the issue:
In the example https://www.pymc.io/projects/examples/en/latest/gaussian_processes/GP-Births.html we see in the model diagram that f_trend is a deterministic variable coming from a HSGP-component with coordinate time
f_trend = gp_trend.prior(
name="f_trend", X=normalized_time_data[:, None], dims="time"
)So far so good :)
However: for pymc > 5.16 (I think), this is no longer the case and the coordinate does not longer propagate and it gets its own coordinate f_trend_dim_0. Note this variable is outside the time plate:
The model still works but it would be nice to keep the previous version to have consistent coordinates :)
Remark: Even If I change the model to have a non-existing dimension
f_trend = gp_trend.prior(
name="f_trend",
X=normalized_time_data[:, None],
dims="blabla",
)The result is the same.
Reproducible code example:
https://www.pymc.io/projects/examples/en/latest/gaussian_processes/GP-Births.htmlError message:
No response
PyMC version information:
Works fine with
Last updated: Fri Mar 29 2024
Python implementation: CPython
Python version : 3.11.7
IPython version : 8.20.0
numpyro : 0.14.0
pytensor: 2.19.0
pandas : 2.1.4
preliz : 0.4.1
matplotlib: 3.8.2
pytensor : 2.19.0
pymc : 5.12.0
seaborn : 0.13.2
numpy : 1.26.3
xarray : 2024.2.0
arviz : 0.17.1
Watermark: 2.4.3the issue commes (at least) with
Last updated: Tue Nov 05 2024
Python implementation: CPython
Python version : 3.12.7
IPython version : 8.27.0
numpyro : 0.15.3
pytensor: 2.23.0
xarray : 2023.6.0
preliz : 0.11.0
pandas : 2.2.2
numpy : 1.26.4
pymc : 5.16.1
seaborn : 0.13.2
arviz : 0.17.1
pytensor : 2.23.0
matplotlib: 3.9.2
sklearn : 1.5.1
Watermark: 2.5.0Context for the issue:
No response

