diff --git a/pymc/gp/cov.py b/pymc/gp/cov.py index e275e8de5..a029e1e40 100644 --- a/pymc/gp/cov.py +++ b/pymc/gp/cov.py @@ -617,13 +617,27 @@ def full_from_distance(self, dist: TensorLike, squared: bool = False) -> TensorV class Matern52(Stationary): r""" - The Matern kernel with nu = 5/2. + The Matérn kernel with :math:`\nu = \frac{5}{2}`. .. math:: k(x, x') = \left(1 + \frac{\sqrt{5(x - x')^2}}{\ell} + \frac{5(x-x')^2}{3\ell^2}\right) \mathrm{exp}\left[ - \frac{\sqrt{5(x - x')^2}}{\ell} \right] + + Read more `here `_. + + Parameters + ---------- + input_dim : int + The number of input dimensions + ls : scalar or array, optional + Lengthscale parameter :math:`\ell`; if `input_dim` > 1, a list or array of scalars. + If `input_dim` == 1, a scalar. + ls_inv : scalar or array, optional + Inverse lengthscale :math:`1 / \ell`. One of `ls` or `ls_inv` must be provided. + active_dims : list of int, optional + The dimension(s) the covariance function operates on. """ def full_from_distance(self, dist: TensorLike, squared: bool = False) -> TensorVariable: @@ -657,12 +671,26 @@ def power_spectral_density(self, omega: TensorLike) -> TensorVariable: class Matern32(Stationary): r""" - The Matern kernel with nu = 3/2. + The Matérn kernel with :math:`\nu = \frac{3}{2}`. .. math:: k(x, x') = \left(1 + \frac{\sqrt{3(x - x')^2}}{\ell}\right) \mathrm{exp}\left[ - \frac{\sqrt{3(x - x')^2}}{\ell} \right] + + Read more `here `_. + + Parameters + ---------- + input_dim : int + The number of input dimensions + ls : scalar or array, optional + Lengthscale parameter :math:`\ell`; if `input_dim` > 1, a list or array of scalars. + If `input_dim` == 1, a scalar. + ls_inv : scalar or array, optional + Inverse lengthscale :math:`1 / \ell`. One of `ls` or `ls_inv` must be provided. + active_dims : list of int, optional + The dimension(s) the covariance function operates on. """ def full_from_distance(self, dist: TensorLike, squared: bool = False) -> TensorVariable: