@@ -1678,20 +1678,20 @@ def __init__(self, lower_diags, upper_diags):
1678
1678
self .lower_diags = lower_diags
1679
1679
self .upper_diags = upper_diags
1680
1680
1681
- def make_node (self , A , b ):
1681
+ def make_node (self , A , x ):
1682
1682
A = as_tensor_variable (A )
1683
- B = as_tensor_variable (b )
1683
+ x = as_tensor_variable (x )
1684
1684
1685
- out_dtype = pytensor .scalar .upcast (A .dtype , B .dtype )
1686
- output = b .type .clone (dtype = out_dtype )()
1685
+ out_dtype = pytensor .scalar .upcast (A .dtype , x .dtype )
1686
+ output = x .type .clone (dtype = out_dtype )()
1687
1687
1688
- return pytensor .graph .basic .Apply (self , [A , B ], [output ])
1688
+ return pytensor .graph .basic .Apply (self , [A , x ], [output ])
1689
1689
1690
1690
def infer_shape (self , fgraph , nodes , shapes ):
1691
1691
return [shapes [0 ][:- 1 ]]
1692
1692
1693
1693
def perform (self , node , inputs , outputs_storage ):
1694
- A , b = inputs
1694
+ A , x = inputs
1695
1695
m , n = A .shape
1696
1696
1697
1697
kl = self .lower_diags
@@ -1703,10 +1703,10 @@ def perform(self, node, inputs, outputs_storage):
1703
1703
A_banded [i , slice (k , None ) if k >= 0 else slice (None , n + k )] = diag (A , k = k )
1704
1704
1705
1705
fn = scipy_linalg .get_blas_funcs ("gbmv" , dtype = A .dtype )
1706
- outputs_storage [0 ][0 ] = fn (m = m , n = n , kl = kl , ku = ku , alpha = 1 , a = A_banded , x = b )
1706
+ outputs_storage [0 ][0 ] = fn (m = m , n = n , kl = kl , ku = ku , alpha = 1 , a = A_banded , x = x )
1707
1707
1708
1708
1709
- def banded_dot (A : TensorLike , b : TensorLike , lower_diags : int , upper_diags : int ):
1709
+ def banded_dot (A : TensorLike , x : TensorLike , lower_diags : int , upper_diags : int ):
1710
1710
"""
1711
1711
Specialized matrix-vector multiplication for cases when A is a banded matrix
1712
1712
@@ -1719,7 +1719,7 @@ def banded_dot(A: TensorLike, b: TensorLike, lower_diags: int, upper_diags: int)
1719
1719
----------
1720
1720
A: Tensorlike
1721
1721
Matrix to perform banded dot on.
1722
- b : Tensorlike
1722
+ x : Tensorlike
1723
1723
Vector to perform banded dot on.
1724
1724
lower_diags: int
1725
1725
Number of nonzero lower diagonals of A
@@ -1731,7 +1731,7 @@ def banded_dot(A: TensorLike, b: TensorLike, lower_diags: int, upper_diags: int)
1731
1731
out: Tensor
1732
1732
The matrix multiplication result
1733
1733
"""
1734
- return Blockwise (BandedDot (lower_diags , upper_diags ))(A , b )
1734
+ return Blockwise (BandedDot (lower_diags , upper_diags ))(A , x )
1735
1735
1736
1736
1737
1737
__all__ = [
0 commit comments