|
| 1 | +import numpy as np |
| 2 | + |
| 3 | +import pytensor.tensor as pt |
| 4 | +from pytensor.tensor import tensor |
| 5 | +from pytensor.tensor.blockwise import Blockwise |
| 6 | +from pytensor.tensor.math import Dot |
| 7 | +from tests.link.mlx.test_basic import compare_mlx_and_py |
| 8 | + |
| 9 | + |
| 10 | +# Equivalent blockwise to matmul but with dumb signature |
| 11 | +odd_matmul = Blockwise(Dot(), signature="(i00,i01),(i10,i11)->(o00,o01)") |
| 12 | + |
| 13 | + |
| 14 | +# @pytest.mark.parametrize("matmul_op", (matmul, odd_matmul)) |
| 15 | +# def test_matmul(matmul_op): |
| 16 | +# rng = np.random.default_rng(14) |
| 17 | +# a = tensor("a", shape=(2, 3, 5)) |
| 18 | +# b = tensor("b", shape=(2, 5, 3)) |
| 19 | +# test_values = [ |
| 20 | +# rng.normal(size=(inp.type.shape)).astype(config.floatX) for inp in (a, b) |
| 21 | +# ] |
| 22 | +# |
| 23 | +# out = matmul_op(a, b) |
| 24 | +# assert isinstance(out.owner.op, Blockwise) |
| 25 | +# fn, _ = compare_mlx_and_py([a, b], [out], test_values) |
| 26 | +# |
| 27 | +## Check we are not adding any unnecessary stuff |
| 28 | +# jaxpr = str(jax.make_jaxpr(fn.vm.jit_fn)(*test_values)) |
| 29 | +# jaxpr = jaxpr.replace("name=jax_funcified_fgraph", "name=matmul") |
| 30 | +# expected_jaxpr = str(jax.make_jaxpr(jax.jit(jax.numpy.matmul))(*test_values)) |
| 31 | +# assert jaxpr == expected_jaxpr |
| 32 | + |
| 33 | + |
| 34 | +# conv1d |
| 35 | +# (2, 100) |
| 36 | +# (8, 100) |
| 37 | +# mode = valid |
| 38 | + |
| 39 | + |
| 40 | +def test_blockwise_conv1d(): |
| 41 | + rng = np.random.default_rng(14) |
| 42 | + a = tensor("a", shape=(2, 100)) |
| 43 | + b = tensor("b", shape=(2, 8)) |
| 44 | + |
| 45 | + # a_test = np.broadcast_to(np.arange(100), (2, 100)) |
| 46 | + a_test = rng.normal(size=(2, 100)) |
| 47 | + b_test = rng.normal(size=(2, 8)) |
| 48 | + # b_test = np.concatenate( |
| 49 | + # [ |
| 50 | + # np.ones((1, 8)), |
| 51 | + # np.zeros((1, 8)), |
| 52 | + # np.zeros((1, 8)), |
| 53 | + # np.array([1, 0, 0, 0, 0, 0, 0, 0]).reshape(1, 8), |
| 54 | + # np.array([1, 0, 0, 0, 0, 0, 0, 0]).reshape(1, 8), |
| 55 | + # ], |
| 56 | + # axis=0, |
| 57 | + # ) |
| 58 | + |
| 59 | + test_values = [a_test, b_test] |
| 60 | + |
| 61 | + out = pt.signal.convolve1d(a, b, mode="valid") |
| 62 | + |
| 63 | + # assert isinstance(out.owner.op, Blockwise) |
| 64 | + compare_mlx_and_py([a, b], [out], test_values, must_be_device_array=True) |
0 commit comments