@@ -1678,20 +1678,20 @@ def __init__(self, lower_diags, upper_diags):
16781678 self .lower_diags = lower_diags
16791679 self .upper_diags = upper_diags
16801680
1681- def make_node (self , A , b ):
1681+ def make_node (self , A , x ):
16821682 A = as_tensor_variable (A )
1683- B = as_tensor_variable (b )
1683+ x = as_tensor_variable (x )
16841684
1685- out_dtype = pytensor .scalar .upcast (A .dtype , B .dtype )
1686- output = b .type .clone (dtype = out_dtype )()
1685+ out_dtype = pytensor .scalar .upcast (A .dtype , x .dtype )
1686+ output = x .type .clone (dtype = out_dtype )()
16871687
1688- return pytensor .graph .basic .Apply (self , [A , B ], [output ])
1688+ return pytensor .graph .basic .Apply (self , [A , x ], [output ])
16891689
16901690 def infer_shape (self , fgraph , nodes , shapes ):
16911691 return [shapes [0 ][:- 1 ]]
16921692
16931693 def perform (self , node , inputs , outputs_storage ):
1694- A , b = inputs
1694+ A , x = inputs
16951695 m , n = A .shape
16961696
16971697 kl = self .lower_diags
@@ -1703,10 +1703,10 @@ def perform(self, node, inputs, outputs_storage):
17031703 A_banded [i , slice (k , None ) if k >= 0 else slice (None , n + k )] = diag (A , k = k )
17041704
17051705 fn = scipy_linalg .get_blas_funcs ("gbmv" , dtype = A .dtype )
1706- outputs_storage [0 ][0 ] = fn (m = m , n = n , kl = kl , ku = ku , alpha = 1 , a = A_banded , x = b )
1706+ outputs_storage [0 ][0 ] = fn (m = m , n = n , kl = kl , ku = ku , alpha = 1 , a = A_banded , x = x )
17071707
17081708
1709- def banded_dot (A : TensorLike , b : TensorLike , lower_diags : int , upper_diags : int ):
1709+ def banded_dot (A : TensorLike , x : TensorLike , lower_diags : int , upper_diags : int ):
17101710 """
17111711 Specialized matrix-vector multiplication for cases when A is a banded matrix
17121712
@@ -1719,7 +1719,7 @@ def banded_dot(A: TensorLike, b: TensorLike, lower_diags: int, upper_diags: int)
17191719 ----------
17201720 A: Tensorlike
17211721 Matrix to perform banded dot on.
1722- b : Tensorlike
1722+ x : Tensorlike
17231723 Vector to perform banded dot on.
17241724 lower_diags: int
17251725 Number of nonzero lower diagonals of A
@@ -1731,7 +1731,7 @@ def banded_dot(A: TensorLike, b: TensorLike, lower_diags: int, upper_diags: int)
17311731 out: Tensor
17321732 The matrix multiplication result
17331733 """
1734- return Blockwise (BandedDot (lower_diags , upper_diags ))(A , b )
1734+ return Blockwise (BandedDot (lower_diags , upper_diags ))(A , x )
17351735
17361736
17371737__all__ = [
0 commit comments