@@ -190,13 +190,10 @@ class LinearRegression(PyMCModel):
190
190
Defines the PyMC model
191
191
192
192
.. math::
193
- \beta &\sim \mathrm{Normal}(0, 50)
194
-
195
- \sigma &\sim \mathrm{HalfNormal}(1)
196
-
197
- \mu &= X * \beta
198
-
199
- y &\sim \mathrm{Normal}(\mu, \sigma)
193
+ \beta &\sim \mathrm{Normal}(0, 50) \\
194
+ \sigma &\sim \mathrm{HalfNormal}(1) \\
195
+ \mu &= X \cdot \beta \\
196
+ y &\sim \mathrm{Normal}(\mu, \sigma) \\
200
197
201
198
Example
202
199
--------
@@ -236,14 +233,10 @@ class WeightedSumFitter(PyMCModel):
236
233
Defines the PyMC model:
237
234
238
235
.. math::
239
-
240
- \sigma &\sim \mathrm{HalfNormal}(1)
241
-
242
- \beta &\sim \mathrm{Dirichlet}(1,...,1)
243
-
244
- \mu &= X * \beta
245
-
246
- y &\sim \mathrm{Normal}(\mu, \sigma)
236
+ \sigma &\sim \mathrm{HalfNormal}(1) \\
237
+ \beta &\sim \mathrm{Dirichlet}(1,...,1) \\
238
+ \mu &= X \cdot \beta \\
239
+ y &\sim \mathrm{Normal}(\mu, \sigma) \\
247
240
248
241
Example
249
242
--------
@@ -433,14 +426,10 @@ class PropensityScore(PyMCModel):
433
426
Defines the PyMC model
434
427
435
428
.. math::
436
- \beta &\sim \mathrm{Normal}(0, 1)
437
-
438
- \sigma &\sim \mathrm{HalfNormal}(1)
439
-
440
- \mu &= X * \beta
441
-
442
- p &= logit^{-1}(mu)
443
-
429
+ \beta &\sim \mathrm{Normal}(0, 1) \\
430
+ \sigma &\sim \mathrm{HalfNormal}(1) \\
431
+ \mu &= X \cdot \beta \\
432
+ p &= \text{logit}^{-1}(\mu) \\
444
433
t &\sim \mathrm{Bernoulli}(p)
445
434
446
435
Example
0 commit comments