@@ -190,13 +190,10 @@ class LinearRegression(PyMCModel):
190190 Defines the PyMC model
191191
192192 .. math::
193- \beta &\sim \mathrm{Normal}(0, 50)
194-
195- \sigma &\sim \mathrm{HalfNormal}(1)
196-
197- \mu &= X * \beta
198-
199- y &\sim \mathrm{Normal}(\mu, \sigma)
193+ \beta &\sim \mathrm{Normal}(0, 50) \\
194+ \sigma &\sim \mathrm{HalfNormal}(1) \\
195+ \mu &= X \cdot \beta \\
196+ y &\sim \mathrm{Normal}(\mu, \sigma) \\
200197
201198 Example
202199 --------
@@ -236,14 +233,10 @@ class WeightedSumFitter(PyMCModel):
236233 Defines the PyMC model:
237234
238235 .. math::
239-
240- \sigma &\sim \mathrm{HalfNormal}(1)
241-
242- \beta &\sim \mathrm{Dirichlet}(1,...,1)
243-
244- \mu &= X * \beta
245-
246- y &\sim \mathrm{Normal}(\mu, \sigma)
236+ \sigma &\sim \mathrm{HalfNormal}(1) \\
237+ \beta &\sim \mathrm{Dirichlet}(1,...,1) \\
238+ \mu &= X \cdot \beta \\
239+ y &\sim \mathrm{Normal}(\mu, \sigma) \\
247240
248241 Example
249242 --------
@@ -433,14 +426,10 @@ class PropensityScore(PyMCModel):
433426 Defines the PyMC model
434427
435428 .. math::
436- \beta &\sim \mathrm{Normal}(0, 1)
437-
438- \sigma &\sim \mathrm{HalfNormal}(1)
439-
440- \mu &= X * \beta
441-
442- p &= logit^{-1}(mu)
443-
429+ \beta &\sim \mathrm{Normal}(0, 1) \\
430+ \sigma &\sim \mathrm{HalfNormal}(1) \\
431+ \mu &= X \cdot \beta \\
432+ p &= \text{logit}^{-1}(\mu) \\
444433 t &\sim \mathrm{Bernoulli}(p)
445434
446435 Example
0 commit comments