|
3 | 3 | """
|
4 | 4 |
|
5 | 5 | import causalpy as cp
|
| 6 | +import arviz as az |
| 7 | +import pandas as pd |
6 | 8 |
|
7 | 9 | sample_kwargs = {"tune": 20, "draws": 20, "chains": 2, "cores": 2}
|
8 | 10 |
|
@@ -42,3 +44,34 @@ def test_regression_kink_gradient_change():
|
42 | 44 | cp.pymc_experiments.RegressionKink._eval_gradient_change(-1, -1, -2, 1) == -1.0
|
43 | 45 | )
|
44 | 46 | assert cp.pymc_experiments.RegressionKink._eval_gradient_change(1, 0, -2, 1) == -1.0
|
| 47 | + |
| 48 | + |
| 49 | +def test_inverse_prop_param_recovery(): |
| 50 | + df = cp.load_data("nhefs") |
| 51 | + seed = 42 |
| 52 | + result = cp.pymc_experiments.InversePropensityWeighting( |
| 53 | + df, |
| 54 | + formula="trt ~ 1 + age + race", |
| 55 | + outcome_variable ="outcome", |
| 56 | + weighting_scheme="robust", |
| 57 | + model=cp.pymc_models.PropensityScore( |
| 58 | + sample_kwargs=sample_kwargs |
| 59 | + ), |
| 60 | + ) |
| 61 | + assert isinstance(result.idata, az.InferenceData) |
| 62 | + ps = result.idata.posterior['p'].mean(dim=('chain', 'draw')) |
| 63 | + w1, w2, _, _ = result.make_doubly_robust_adjustment(ps) |
| 64 | + assert isinstance(w1, pd.Series) |
| 65 | + assert isinstance(w2, pd.Series) |
| 66 | + w1, w2, n1, nw = result.make_raw_adjustments(ps) |
| 67 | + assert isinstance(w1, pd.Series) |
| 68 | + assert isinstance(w2, pd.Series) |
| 69 | + w1, w2, n1, n2 = result.make_robust_adjustments(ps) |
| 70 | + assert isinstance(w1, pd.Series) |
| 71 | + assert isinstance(w2, pd.Series) |
| 72 | + w1, w2, n1, n2 = result.make_overlap_adjustments(ps) |
| 73 | + assert isinstance(w1, pd.Series) |
| 74 | + assert isinstance(w2, pd.Series) |
| 75 | + |
| 76 | + |
| 77 | + |
0 commit comments