|
2 | 2 | "cells": [
|
3 | 3 | {
|
4 | 4 | "cell_type": "code",
|
5 |
| - "execution_count": 357, |
| 5 | + "execution_count": 378, |
6 | 6 | "metadata": {},
|
7 | 7 | "outputs": [
|
8 | 8 | {
|
|
50 | 50 | },
|
51 | 51 | {
|
52 | 52 | "cell_type": "code",
|
53 |
| - "execution_count": 325, |
| 53 | + "execution_count": 376, |
54 | 54 | "metadata": {},
|
55 | 55 | "outputs": [
|
56 | 56 | {
|
|
83 | 83 | " <tbody>\n",
|
84 | 84 | " <tr>\n",
|
85 | 85 | " <th>0</th>\n",
|
86 |
| - " <td>1.374096</td>\n", |
87 |
| - " <td>0.373163</td>\n", |
88 |
| - " <td>1</td>\n", |
89 |
| - " <td>6.054919</td>\n", |
| 86 | + " <td>-0.700611</td>\n", |
| 87 | + " <td>0.215690</td>\n", |
| 88 | + " <td>0</td>\n", |
| 89 | + " <td>-1.060506</td>\n", |
90 | 90 | " </tr>\n",
|
91 | 91 | " <tr>\n",
|
92 | 92 | " <th>1</th>\n",
|
93 |
| - " <td>1.051587</td>\n", |
94 |
| - " <td>0.834493</td>\n", |
95 |
| - " <td>0</td>\n", |
96 |
| - " <td>2.927939</td>\n", |
| 93 | + " <td>0.880796</td>\n", |
| 94 | + " <td>1.082451</td>\n", |
| 95 | + " <td>1</td>\n", |
| 96 | + " <td>3.778433</td>\n", |
97 | 97 | " </tr>\n",
|
98 | 98 | " <tr>\n",
|
99 | 99 | " <th>2</th>\n",
|
100 |
| - " <td>-0.450553</td>\n", |
101 |
| - " <td>0.232016</td>\n", |
| 100 | + " <td>-0.121070</td>\n", |
| 101 | + " <td>0.767333</td>\n", |
102 | 102 | " <td>0</td>\n",
|
103 |
| - " <td>-0.043942</td>\n", |
| 103 | + " <td>0.617862</td>\n", |
104 | 104 | " </tr>\n",
|
105 | 105 | " <tr>\n",
|
106 | 106 | " <th>3</th>\n",
|
107 |
| - " <td>0.720264</td>\n", |
108 |
| - " <td>-0.539953</td>\n", |
109 |
| - " <td>0</td>\n", |
110 |
| - " <td>0.739484</td>\n", |
111 |
| - " </tr>\n", |
112 |
| - " <tr>\n", |
113 |
| - " <th>4</th>\n", |
114 |
| - " <td>0.778325</td>\n", |
115 |
| - " <td>1.534670</td>\n", |
| 107 | + " <td>0.149978</td>\n", |
| 108 | + " <td>1.146856</td>\n", |
116 | 109 | " <td>1</td>\n",
|
117 |
| - " <td>4.425341</td>\n", |
118 |
| - " </tr>\n", |
119 |
| - " <tr>\n", |
120 |
| - " <th>...</th>\n", |
121 |
| - " <td>...</td>\n", |
122 |
| - " <td>...</td>\n", |
123 |
| - " <td>...</td>\n", |
124 |
| - " <td>...</td>\n", |
| 110 | + " <td>2.831018</td>\n", |
125 | 111 | " </tr>\n",
|
126 | 112 | " <tr>\n",
|
127 |
| - " <th>9995</th>\n", |
128 |
| - " <td>0.890611</td>\n", |
129 |
| - " <td>1.266610</td>\n", |
| 113 | + " <th>4</th>\n", |
| 114 | + " <td>-0.506154</td>\n", |
| 115 | + " <td>0.113415</td>\n", |
130 | 116 | " <td>0</td>\n",
|
131 |
| - " <td>2.732242</td>\n", |
132 |
| - " </tr>\n", |
133 |
| - " <tr>\n", |
134 |
| - " <th>9996</th>\n", |
135 |
| - " <td>1.428810</td>\n", |
136 |
| - " <td>1.557557</td>\n", |
137 |
| - " <td>1</td>\n", |
138 |
| - " <td>5.068505</td>\n", |
139 |
| - " </tr>\n", |
140 |
| - " <tr>\n", |
141 |
| - " <th>9997</th>\n", |
142 |
| - " <td>1.678820</td>\n", |
143 |
| - " <td>1.254265</td>\n", |
144 |
| - " <td>1</td>\n", |
145 |
| - " <td>4.317824</td>\n", |
146 |
| - " </tr>\n", |
147 |
| - " <tr>\n", |
148 |
| - " <th>9998</th>\n", |
149 |
| - " <td>1.341190</td>\n", |
150 |
| - " <td>1.002567</td>\n", |
151 |
| - " <td>1</td>\n", |
152 |
| - " <td>4.527394</td>\n", |
153 |
| - " </tr>\n", |
154 |
| - " <tr>\n", |
155 |
| - " <th>9999</th>\n", |
156 |
| - " <td>1.330508</td>\n", |
157 |
| - " <td>0.702635</td>\n", |
158 |
| - " <td>1</td>\n", |
159 |
| - " <td>2.982631</td>\n", |
| 117 | + " <td>-0.106079</td>\n", |
160 | 118 | " </tr>\n",
|
161 | 119 | " </tbody>\n",
|
162 | 120 | "</table>\n",
|
163 |
| - "<p>10000 rows × 4 columns</p>\n", |
164 | 121 | "</div>"
|
165 | 122 | ],
|
166 | 123 | "text/plain": [
|
167 |
| - " x1 x2 trt outcome\n", |
168 |
| - "0 1.374096 0.373163 1 6.054919\n", |
169 |
| - "1 1.051587 0.834493 0 2.927939\n", |
170 |
| - "2 -0.450553 0.232016 0 -0.043942\n", |
171 |
| - "3 0.720264 -0.539953 0 0.739484\n", |
172 |
| - "4 0.778325 1.534670 1 4.425341\n", |
173 |
| - "... ... ... ... ...\n", |
174 |
| - "9995 0.890611 1.266610 0 2.732242\n", |
175 |
| - "9996 1.428810 1.557557 1 5.068505\n", |
176 |
| - "9997 1.678820 1.254265 1 4.317824\n", |
177 |
| - "9998 1.341190 1.002567 1 4.527394\n", |
178 |
| - "9999 1.330508 0.702635 1 2.982631\n", |
179 |
| - "\n", |
180 |
| - "[10000 rows x 4 columns]" |
| 124 | + " x1 x2 trt outcome\n", |
| 125 | + "0 -0.700611 0.215690 0 -1.060506\n", |
| 126 | + "1 0.880796 1.082451 1 3.778433\n", |
| 127 | + "2 -0.121070 0.767333 0 0.617862\n", |
| 128 | + "3 0.149978 1.146856 1 2.831018\n", |
| 129 | + "4 -0.506154 0.113415 0 -0.106079" |
181 | 130 | ]
|
182 | 131 | },
|
183 |
| - "execution_count": 325, |
| 132 | + "execution_count": 376, |
184 | 133 | "metadata": {},
|
185 | 134 | "output_type": "execute_result"
|
186 | 135 | }
|
|
189 | 138 | "df1 = pd.DataFrame(np.random.multivariate_normal([0.5, 1], [[2, 1], [1, 1]], size=10000), columns=['x1', 'x2'])\n",
|
190 | 139 | "df1['trt'] = np.where(-0.5 + 0.25 * df1['x1'] + 0.75 * df1['x2'] + np.random.normal(0, 1, size=10000) > 0, 1, 0)\n",
|
191 | 140 | "df1['outcome'] = 2 * df1['trt'] + df1['x1'] + df1['x2'] + np.random.normal(0, 1, size=10000)\n",
|
192 |
| - "df1" |
| 141 | + "df1.head()" |
193 | 142 | ]
|
194 | 143 | },
|
195 | 144 | {
|
|
208 | 157 | },
|
209 | 158 | {
|
210 | 159 | "cell_type": "code",
|
211 |
| - "execution_count": 338, |
| 160 | + "execution_count": 379, |
212 | 161 | "metadata": {},
|
213 | 162 | "outputs": [
|
214 | 163 | {
|
|
227 | 176 | {
|
228 | 177 | "data": {
|
229 | 178 | "text/plain": [
|
230 |
| - "<causalpy.pymc_experiments.InversePropensityWeighting at 0x2aebe6110>" |
| 179 | + "<causalpy.pymc_experiments.InversePropensityWeighting at 0x32412ee50>" |
231 | 180 | ]
|
232 | 181 | },
|
233 |
| - "execution_count": 338, |
| 182 | + "execution_count": 379, |
234 | 183 | "metadata": {},
|
235 | 184 | "output_type": "execute_result"
|
236 | 185 | }
|
|
878 | 827 | },
|
879 | 828 | {
|
880 | 829 | "cell_type": "code",
|
881 |
| - "execution_count": 373, |
| 830 | + "execution_count": 380, |
882 | 831 | "metadata": {},
|
883 | 832 | "outputs": [
|
884 | 833 | {
|
|
969 | 918 | "4 40 0 0 20 19 4.989251"
|
970 | 919 | ]
|
971 | 920 | },
|
972 |
| - "execution_count": 373, |
| 921 | + "execution_count": 380, |
973 | 922 | "metadata": {},
|
974 | 923 | "output_type": "execute_result"
|
975 | 924 | }
|
|
981 | 930 | },
|
982 | 931 | {
|
983 | 932 | "cell_type": "code",
|
984 |
| - "execution_count": 365, |
| 933 | + "execution_count": 381, |
985 | 934 | "metadata": {},
|
986 | 935 | "outputs": [
|
987 | 936 | {
|
|
1000 | 949 | {
|
1001 | 950 | "data": {
|
1002 | 951 | "text/plain": [
|
1003 |
| - "<causalpy.pymc_experiments.InversePropensityWeighting at 0x2e6f4ba90>" |
| 952 | + "<causalpy.pymc_experiments.InversePropensityWeighting at 0x3bdbaa4d0>" |
1004 | 953 | ]
|
1005 | 954 | },
|
1006 |
| - "execution_count": 365, |
| 955 | + "execution_count": 381, |
1007 | 956 | "metadata": {},
|
1008 | 957 | "output_type": "execute_result"
|
1009 | 958 | }
|
|
0 commit comments