@@ -357,7 +357,7 @@ def test_its():
357357
358358 Loads data and checks:
359359 1. data is a dataframe
360- 2. causalpy.BasisExpansionTimeSeries returns correct type
360+ 2. causalpy.StructuralTimeSeries returns correct type
361361 3. the correct number of MCMC chains exists in the posterior inference data
362362 4. the correct number of MCMC draws exists in the posterior inference data
363363 5. the method get_plot_data returns a DataFrame with expected columns
@@ -368,16 +368,16 @@ def test_its():
368368 .set_index ("date" )
369369 )
370370 treatment_time = pd .to_datetime ("2017-01-01" )
371- result = cp .BasisExpansionTimeSeries (
371+ result = cp .StructuralTimeSeries (
372372 df ,
373373 treatment_time ,
374374 formula = "y ~ 1 + t + C(month)" ,
375375 model = cp .pymc_models .LinearRegression (sample_kwargs = sample_kwargs ),
376376 )
377377 # Test 1. plot method runs
378378 result .plot ()
379- # 2. causalpy.BasisExpansionTimeSeries returns correct type
380- assert isinstance (result , cp .BasisExpansionTimeSeries )
379+ # 2. causalpy.StructuralTimeSeries returns correct type
380+ assert isinstance (result , cp .StructuralTimeSeries )
381381 assert len (result .idata .posterior .coords ["chain" ]) == sample_kwargs ["chains" ]
382382 assert len (result .idata .posterior .coords ["draw" ]) == sample_kwargs ["draws" ]
383383 result .summary ()
@@ -412,7 +412,7 @@ def test_its_covid():
412412
413413 Loads data and checks:
414414 1. data is a dataframe
415- 2. causalpy.BasisExpansionTimeSeries returns correct type
415+ 2. causalpy.StructuralTimeSeries returns correct type
416416 3. the correct number of MCMC chains exists in the posterior inference data
417417 4. the correct number of MCMC draws exists in the posterior inference data
418418 5. the method get_plot_data returns a DataFrame with expected columns
@@ -424,16 +424,16 @@ def test_its_covid():
424424 .set_index ("date" )
425425 )
426426 treatment_time = pd .to_datetime ("2020-01-01" )
427- result = cp .BasisExpansionTimeSeries (
427+ result = cp .StructuralTimeSeries (
428428 df ,
429429 treatment_time ,
430430 formula = "standardize(deaths) ~ 0 + standardize(t) + C(month) + standardize(temp)" , # noqa E501
431431 model = cp .pymc_models .LinearRegression (sample_kwargs = sample_kwargs ),
432432 )
433433 # Test 1. plot method runs
434434 result .plot ()
435- # 2. causalpy.BasisExpansionTimeSeries returns correct type
436- assert isinstance (result , cp .BasisExpansionTimeSeries )
435+ # 2. causalpy.StructuralTimeSeries returns correct type
436+ assert isinstance (result , cp .StructuralTimeSeries )
437437 assert len (result .idata .posterior .coords ["chain" ]) == sample_kwargs ["chains" ]
438438 assert len (result .idata .posterior .coords ["draw" ]) == sample_kwargs ["draws" ]
439439 result .summary ()
0 commit comments