@@ -87,7 +87,8 @@ class SpikeAndSlabPrior:
8787 >>> import pymc as pm
8888 >>> from causalpy.variable_selection_priors import SpikeAndSlabPrior
8989 >>> spike_slab = SpikeAndSlabPrior(dims="features")
90- >>> with pm.Model():
90+ >>> coords = {"features": ["a", "b", "c", "d", "e"]}
91+ >>> with pm.Model(coords=coords) as model:
9192 ... beta = spike_slab.create_variable("beta")
9293 """
9394
@@ -166,7 +167,8 @@ class HorseshoePrior:
166167 >>> import pymc as pm
167168 >>> from causalpy.variable_selection_priors import HorseshoePrior
168169 >>> horseshoe = HorseshoePrior(dims="features")
169- >>> with pm.Model():
170+ >>> coords = {"features": ["a", "b", "c", "d", "e"]}
171+ >>> with pm.Model(coords=coords) as model:
170172 ... beta = horseshoe.create_variable("beta")
171173 """
172174
@@ -264,10 +266,11 @@ class VariableSelectionPrior:
264266 Example
265267 -------
266268 >>> import pymc as pm
267- >>> from variable_selection_priors import VariableSelectionPrior
269+ >>> from causalpy. variable_selection_priors import VariableSelectionPrior
268270 >>> # Create spike-and-slab prior
269271 >>> vs_prior = VariableSelectionPrior("spike_and_slab")
270- >>> with pm.Model() as model:
272+ >>> coords = {"features": ["a", "b", "c", "d", "e"]}
273+ >>> with pm.Model(coords=coords) as model:
271274 ... # Create coefficients with variable selection
272275 ... beta = vs_prior.create_prior(name="beta", n_params=5, dims="features")
273276 """
@@ -374,7 +377,7 @@ def create_prior(
374377 -------
375378 >>> import pymc as pm
376379 >>> import pandas as pd
377- >>> from variable_selection_priors import VariableSelectionPrior
380+ >>> from causalpy. variable_selection_priors import VariableSelectionPrior
378381 >>> vs_prior = VariableSelectionPrior("spike_and_slab")
379382 >>> with pm.Model() as model:
380383 ... beta = vs_prior.create_prior("beta", n_params=4, dims="features")
0 commit comments