2020top of the pymc-extras Prior infrastructure.
2121"""
2222
23- from typing import Any , Dict , Optional , Union
23+ from typing import Any
2424
2525import numpy as np
2626import pandas as pd
3030
3131
3232def _relaxed_bernoulli_transform (
33- p : Union [ float , pt .TensorVariable ] , temperature : float = 0.1
33+ p : float | pt .TensorVariable , temperature : float = 0.1
3434):
3535 """
3636 Transform function for relaxed (continuous) Bernoulli distribution.
@@ -100,7 +100,7 @@ def __init__(
100100 pi_beta : float = 2 ,
101101 slab_sigma : float = 2 ,
102102 temperature : float = 0.1 ,
103- dims : Optional [ Union [ str , tuple ]] = None ,
103+ dims : str | tuple | None = None ,
104104 ):
105105 self .pi_alpha = pi_alpha
106106 self .pi_beta = pi_beta
@@ -176,11 +176,11 @@ class HorseshoePrior:
176176
177177 def __init__ (
178178 self ,
179- tau0 : Optional [ float ] = None ,
179+ tau0 : float | None = None ,
180180 nu : float = 3 ,
181181 c2_alpha : float = 2 ,
182182 c2_beta : float = 2 ,
183- dims : Optional [ Union [ str , tuple ]] = None ,
183+ dims : str | tuple | None = None ,
184184 ):
185185 self .tau0 = tau0
186186 self .nu = nu
@@ -277,7 +277,7 @@ class VariableSelectionPrior:
277277 ... beta = vs_prior.create_prior(name="beta", n_params=5, dims="features")
278278 """
279279
280- def __init__ (self , prior_type : str , hyperparams : Optional [ Dict [ str , Any ]] = None ):
280+ def __init__ (self , prior_type : str , hyperparams : dict [ str , Any ] | None = None ):
281281 """Initialize the variable selection prior factory."""
282282 self .prior_type = prior_type .lower ()
283283 self .hyperparams = hyperparams or {}
@@ -292,8 +292,8 @@ def __init__(self, prior_type: str, hyperparams: Optional[Dict[str, Any]] = None
292292 self ._prior_instance = None
293293
294294 def _get_default_hyperparams (
295- self , n_params : int , X : Optional [ np .ndarray ] = None
296- ) -> Dict [str , Any ]:
295+ self , n_params : int , X : np .ndarray | None = None
296+ ) -> dict [str , Any ]:
297297 """
298298 Get default hyperparameters for the chosen prior type.
299299
@@ -346,10 +346,10 @@ def create_prior(
346346 self ,
347347 name : str ,
348348 n_params : int ,
349- dims : Optional [ Union [ str , tuple ]] = None ,
350- X : Optional [ np .ndarray ] = None ,
351- hyperparams : Optional [ Dict [ str , Any ]] = None ,
352- ) -> Union [ pm .Deterministic , pm .Distribution ] :
349+ dims : str | tuple | None = None ,
350+ X : np .ndarray | None = None ,
351+ hyperparams : dict [ str , Any ] | None = None ,
352+ ) -> pm .Deterministic | pm .Distribution :
353353 """
354354 Create the specified prior on a coefficient vector.
355355
@@ -559,10 +559,10 @@ def create_variable_selection_prior(
559559 prior_type : str ,
560560 name : str ,
561561 n_params : int ,
562- dims : Optional [ Union [ str , tuple ]] = None ,
563- X : Optional [ np .ndarray ] = None ,
564- hyperparams : Optional [ Dict [ str , Any ]] = None ,
565- ) -> Union [ pm .Deterministic , pm .Distribution ] :
562+ dims : str | tuple | None = None ,
563+ X : np .ndarray | None = None ,
564+ hyperparams : dict [ str , Any ] | None = None ,
565+ ) -> pm .Deterministic | pm .Distribution :
566566 """
567567 Convenience function to create a variable selection prior in one call.
568568
0 commit comments