@@ -90,15 +90,19 @@ def print_coefficients(self) -> None:
90
90
... time_variable_name="t",
91
91
... group_variable_name="group",
92
92
... model=cp.pymc_models.LinearRegression(
93
- ... sample_kwargs={"random_seed": seed, "progressbar": False}),
93
+ ... sample_kwargs={
94
+ ... "draws": 2000,
95
+ ... "random_seed": seed,
96
+ ... "progressbar": False
97
+ ... }),
94
98
... )
95
- >>> result.print_coefficients()
99
+ >>> result.print_coefficients() # doctest: +NUMBER
96
100
Model coefficients:
97
- Intercept 1.08 , 94% HDI [1.03 , 1.13 ]
98
- post_treatment[T.True] 0.98 , 94% HDI [0.91 , 1.06 ]
99
- group 0.16 , 94% HDI [0.09 , 0.23 ]
100
- group:post_treatment[T.True] 0.51 , 94% HDI [0.41 , 0.61 ]
101
- sigma 0.08 , 94% HDI [0.07 , 0.10 ]
101
+ Intercept 1.0 , 94% HDI [1.0 , 1.1 ]
102
+ post_treatment[T.True] 0.9 , 94% HDI [0.9 , 1.0 ]
103
+ group 0.1 , 94% HDI [0.0 , 0.2 ]
104
+ group:post_treatment[T.True] 0.5 , 94% HDI [0.4 , 0.6 ]
105
+ sigma 0.0 , 94% HDI [0.0 , 0.1 ]
102
106
"""
103
107
print ("Model coefficients:" )
104
108
coeffs = az .extract (self .idata .posterior , var_names = "beta" )
@@ -352,22 +356,23 @@ def summary(self) -> None:
352
356
... formula="actual ~ 0 + a + b + c + d + e + f + g",
353
357
... model=cp.pymc_models.WeightedSumFitter(
354
358
... sample_kwargs={
359
+ ... "draws": 2000,
355
360
... "target_accept": 0.95,
356
361
... "random_seed": seed,
357
362
... "progressbar": False,
358
363
... }
359
364
... ),
360
365
... )
361
- >>> result.summary()
366
+ >>> result.summary() # doctest: +NUMBER
362
367
==================================Pre-Post Fit==================================
363
368
Formula: actual ~ 0 + a + b + c + d + e + f + g
364
369
Model coefficients:
365
- a 0.33 , 94% HDI [0.30, 0.38]
370
+ a 0.34 , 94% HDI [0.30, 0.38]
366
371
b 0.05, 94% HDI [0.01, 0.09]
367
372
c 0.31, 94% HDI [0.26, 0.35]
368
373
d 0.06, 94% HDI [0.01, 0.10]
369
374
e 0.02, 94% HDI [0.00, 0.06]
370
- f 0.20 , 94% HDI [0.12 , 0.26]
375
+ f 0.19 , 94% HDI [0.11 , 0.26]
371
376
g 0.04, 94% HDI [0.00, 0.08]
372
377
sigma 0.26, 94% HDI [0.22, 0.30]
373
378
"""
@@ -777,6 +782,7 @@ def summary(self) -> None:
777
782
... group_variable_name="group",
778
783
... model=cp.pymc_models.LinearRegression(
779
784
... sample_kwargs={
785
+ ... "draws": 2000,
780
786
... "target_accept": 0.95,
781
787
... "random_seed": seed,
782
788
... "progressbar": False,
@@ -788,12 +794,12 @@ def summary(self) -> None:
788
794
Formula: y ~ 1 + group*post_treatment
789
795
<BLANKLINE>
790
796
Results:
791
- Causal impact = 0.51, $CI_{94%}$[0.41, 0.61 ]
797
+ Causal impact = 0.51, $CI_{94%}$[0.41, 0.60 ]
792
798
Model coefficients:
793
- Intercept 1.08, 94% HDI [1.03, 1.13 ]
794
- post_treatment[T.True] 0.98 , 94% HDI [0.92, 1.05]
799
+ Intercept 1.08, 94% HDI [1.03, 1.12 ]
800
+ post_treatment[T.True] 0.99 , 94% HDI [0.92, 1.05]
795
801
group 0.16, 94% HDI [0.09, 0.23]
796
- group:post_treatment[T.True] 0.51, 94% HDI [0.41, 0.61 ]
802
+ group:post_treatment[T.True] 0.51, 94% HDI [0.41, 0.60 ]
797
803
sigma 0.08, 94% HDI [0.07, 0.10]
798
804
"""
799
805
@@ -1018,6 +1024,7 @@ def summary(self) -> None:
1018
1024
... formula="y ~ 1 + x + treated + x:treated",
1019
1025
... model=cp.pymc_models.LinearRegression(
1020
1026
... sample_kwargs={
1027
+ ... "draws": 2000,
1021
1028
... "target_accept": 0.95,
1022
1029
... "random_seed": seed,
1023
1030
... "progressbar": False,
@@ -1035,9 +1042,9 @@ def summary(self) -> None:
1035
1042
Discontinuity at threshold = 0.91
1036
1043
Model coefficients:
1037
1044
Intercept 0.09, 94% HDI [-0.00, 0.17]
1038
- treated[T.True] 2.45, 94% HDI [1.66 , 3.28]
1045
+ treated[T.True] 2.45, 94% HDI [1.64 , 3.28]
1039
1046
x 1.32, 94% HDI [1.14, 1.50]
1040
- x:treated[T.True] -3.08 , 94% HDI [-4.17 , -2.05 ]
1047
+ x:treated[T.True] -3.09 , 94% HDI [-4.16 , -2.03 ]
1041
1048
sigma 0.36, 94% HDI [0.31, 0.41]
1042
1049
"""
1043
1050
@@ -1233,23 +1240,24 @@ def summary(self) -> None:
1233
1240
... pretreatment_variable_name="pre",
1234
1241
... model=cp.pymc_models.LinearRegression(
1235
1242
... sample_kwargs={
1243
+ ... "draws": 2000,
1236
1244
... "target_accept": 0.95,
1237
1245
... "random_seed": seed,
1238
1246
... "progressbar": False,
1239
1247
... }
1240
1248
... )
1241
1249
... )
1242
- >>> result.summary()
1250
+ >>> result.summary() # doctest: +NUMBER
1243
1251
==================Pretest/posttest Nonequivalent Group Design===================
1244
1252
Formula: post ~ 1 + C(group) + pre
1245
1253
<BLANKLINE>
1246
1254
Results:
1247
- Causal impact = 1.88 , $CI_{94%}$[1.69 , 2.07 ]
1255
+ Causal impact = 1.8 , $CI_{94%}$[1.6 , 2.0 ]
1248
1256
Model coefficients:
1249
- Intercept -0.47 , 94% HDI [-1.16 , 0.24 ]
1250
- C(group)[T.1] 1.88 , 94% HDI [1.69 , 2.07 ]
1251
- pre 1.05 , 94% HDI [0.98 , 1.12 ]
1252
- sigma 0.51 , 94% HDI [0.46 , 0.56 ]
1257
+ Intercept -0.4 , 94% HDI [-1.2 , 0.2 ]
1258
+ C(group)[T.1] 1.8 , 94% HDI [1.6 , 2.0 ]
1259
+ pre 1.0 , 94% HDI [0.9 , 1.1 ]
1260
+ sigma 0.5 , 94% HDI [0.4 , 0.5 ]
1253
1261
1254
1262
"""
1255
1263
@@ -1317,9 +1325,9 @@ class InstrumentalVariable(ExperimentalDesign):
1317
1325
>>> y = 2 + 3 * X + 3 * e1
1318
1326
>>> test_data = pd.DataFrame({"y": y, "X": X, "Z": Z})
1319
1327
>>> sample_kwargs = {
1320
- ... "tune": 10 ,
1321
- ... "draws": 20 ,
1322
- ... "chains": 4 ,
1328
+ ... "tune": 1 ,
1329
+ ... "draws": 5 ,
1330
+ ... "chains": 1 ,
1323
1331
... "cores": 4,
1324
1332
... "target_accept": 0.95,
1325
1333
... "progressbar": False,
0 commit comments