|
| 1 | +# Copyright Contributors to the Pyro project. |
| 2 | +# SPDX-License-Identifier: Apache-2.0 |
| 3 | + |
| 4 | +from numpy.testing import assert_allclose |
| 5 | +import pytest |
| 6 | + |
| 7 | +from jax import grad, jit, partial, random |
| 8 | +from jax.lax import fori_loop |
| 9 | +import jax.numpy as jnp |
| 10 | +from jax.test_util import check_close |
| 11 | + |
| 12 | +import numpyro |
| 13 | +import numpyro.distributions as dist |
| 14 | +from numpyro.distributions import constraints |
| 15 | +from numpyro.infer import SVI, RenyiELBO, Trace_ELBO |
| 16 | + |
| 17 | +try: |
| 18 | + import optax |
| 19 | + |
| 20 | + from numpyro.contrib.optim import optax_to_numpyro |
| 21 | + |
| 22 | + # the optimizer test is parameterized by different optax optimizers, but we have |
| 23 | + # to define them here to ensure that `optax` is defined. pytest.mark.parameterize |
| 24 | + # decorators are run even if tests are skipped at the top of the file. |
| 25 | + optimizers = [ |
| 26 | + (optax.adam, (1e-2,), {}), |
| 27 | + # clipped adam |
| 28 | + (optax.chain, (optax.clip(10.0), optax.adam(1e-2)), {}), |
| 29 | + (optax.adagrad, (1e-1,), {}), |
| 30 | + # SGD with momentum |
| 31 | + (optax.sgd, (1e-2,), {"momentum": 0.9}), |
| 32 | + (optax.rmsprop, (1e-2,), {"decay": 0.95}), |
| 33 | + # RMSProp with momentum |
| 34 | + (optax.rmsprop, (1e-4,), {"decay": 0.9, "momentum": 0.9}), |
| 35 | + (optax.sgd, (1e-2,), {}), |
| 36 | + ] |
| 37 | +except ImportError: |
| 38 | + pytestmark = pytest.mark.skip(reason="optax is not installed") |
| 39 | + optimizers = [] |
| 40 | + |
| 41 | + |
| 42 | +def loss(params): |
| 43 | + return jnp.sum(params["x"] ** 2 + params["y"] ** 2) |
| 44 | + |
| 45 | + |
| 46 | +@partial(jit, static_argnums=(1,)) |
| 47 | +def step(opt_state, optim): |
| 48 | + params = optim.get_params(opt_state) |
| 49 | + g = grad(loss)(params) |
| 50 | + return optim.update(g, opt_state) |
| 51 | + |
| 52 | + |
| 53 | +@pytest.mark.parametrize("optim_class, args, kwargs", optimizers) |
| 54 | +def test_optim_multi_params(optim_class, args, kwargs): |
| 55 | + params = {"x": jnp.array([1.0, 1.0, 1.0]), "y": jnp.array([-1, -1.0, -1.0])} |
| 56 | + opt = optax_to_numpyro(optim_class(*args, **kwargs)) |
| 57 | + opt_state = opt.init(params) |
| 58 | + for i in range(2000): |
| 59 | + opt_state = step(opt_state, opt) |
| 60 | + for _, param in opt.get_params(opt_state).items(): |
| 61 | + assert jnp.allclose(param, jnp.zeros(3)) |
| 62 | + |
| 63 | + |
| 64 | +@pytest.mark.parametrize("elbo", [Trace_ELBO(), RenyiELBO(num_particles=10)]) |
| 65 | +def test_beta_bernoulli(elbo): |
| 66 | + data = jnp.array([1.0] * 8 + [0.0] * 2) |
| 67 | + |
| 68 | + def model(data): |
| 69 | + f = numpyro.sample("beta", dist.Beta(1.0, 1.0)) |
| 70 | + numpyro.sample("obs", dist.Bernoulli(f), obs=data) |
| 71 | + |
| 72 | + def guide(data): |
| 73 | + alpha_q = numpyro.param("alpha_q", 1.0, constraint=constraints.positive) |
| 74 | + beta_q = numpyro.param("beta_q", 1.0, constraint=constraints.positive) |
| 75 | + numpyro.sample("beta", dist.Beta(alpha_q, beta_q)) |
| 76 | + |
| 77 | + adam = optax.adam(0.05) |
| 78 | + svi = SVI(model, guide, adam, elbo) |
| 79 | + svi_state = svi.init(random.PRNGKey(1), data) |
| 80 | + assert_allclose(svi.optim.get_params(svi_state.optim_state)["alpha_q"], 0.0) |
| 81 | + |
| 82 | + def body_fn(i, val): |
| 83 | + svi_state, _ = svi.update(val, data) |
| 84 | + return svi_state |
| 85 | + |
| 86 | + svi_state = fori_loop(0, 2000, body_fn, svi_state) |
| 87 | + params = svi.get_params(svi_state) |
| 88 | + assert_allclose( |
| 89 | + params["alpha_q"] / (params["alpha_q"] + params["beta_q"]), |
| 90 | + 0.8, |
| 91 | + atol=0.05, |
| 92 | + rtol=0.05, |
| 93 | + ) |
| 94 | + |
| 95 | + |
| 96 | +def test_jitted_update_fn(): |
| 97 | + data = jnp.array([1.0] * 8 + [0.0] * 2) |
| 98 | + |
| 99 | + def model(data): |
| 100 | + f = numpyro.sample("beta", dist.Beta(1.0, 1.0)) |
| 101 | + numpyro.sample("obs", dist.Bernoulli(f), obs=data) |
| 102 | + |
| 103 | + def guide(data): |
| 104 | + alpha_q = numpyro.param("alpha_q", 1.0, constraint=constraints.positive) |
| 105 | + beta_q = numpyro.param("beta_q", 1.0, constraint=constraints.positive) |
| 106 | + numpyro.sample("beta", dist.Beta(alpha_q, beta_q)) |
| 107 | + |
| 108 | + adam = optax.adam(0.05) |
| 109 | + svi = SVI(model, guide, adam, Trace_ELBO()) |
| 110 | + svi_state = svi.init(random.PRNGKey(1), data) |
| 111 | + expected = svi.get_params(svi.update(svi_state, data)[0]) |
| 112 | + |
| 113 | + actual = svi.get_params(jit(svi.update)(svi_state, data=data)[0]) |
| 114 | + check_close(actual, expected, atol=1e-5) |
0 commit comments