|
16 | 16 | {S^d_p} &= 0 \\
|
17 | 17 | {S^p} &= {S^p_p} + {S^d_p} = 100 + 0 = 100 \\
|
18 | 18 | {C}_p &= 500 \\
|
19 |
| -\text{Total Amount eligible for Reward} \quad{E_p} &= min({S}_p, {C}_p) = min(500, 100) = 100 \\ |
20 |
| -\text{Reward Rate (Yearly)} \quad{r} &= 10\% \\ |
21 |
| -
|
22 |
| -\text{Total Reward for one year} \quad{R_p} &= {r} \times {E_p} = 10\% \times 100 = 10 \\ |
23 |
| -\text{Publisher Reward} \quad{R^p_p} &= {r} \times min({S^p_p}, {C}_p) = 10\% \times 100 = 10 \\ |
24 |
| -\text{Delegator Reward} \quad{R^d_p} &= {R_p} - {R^p_p} = 10 - 10 = 0 \\ |
25 |
| -\text{Effective Publisher Yield Rate} \quad{r^p_p} &= \frac{R^p_p}{S^p_p} = \frac{10}{100} = 10\% \\ |
26 |
| -\text{Effective Delegator Yield Rate} \quad{r^d_p} &= \frac{R^d_p}{S^d_p} = \frac{0}{0} = 0\% \\ |
| 19 | +\text{Total Amount eligible for Rewards} \quad{E_p} &= min({S}_p, {C}_p) = min(500, 100) = 100 \\ |
| 20 | +\text{Annual Rate of Rewards} \quad{r} &= 10\% \\ |
| 21 | +
|
| 22 | +\text{Total Rewards for one year} \quad{R_p} &= {r} \times {E_p} = 10\% \times 100 = 10 \\ |
| 23 | +\text{Publisher Rewards} \quad{R^p_p} &= {r} \times min({S^p_p}, {C}_p) = 10\% \times 100 = 10 \\ |
| 24 | +\text{Delegator Rewards} \quad{R^d_p} &= {R_p} - {R^p_p} = 10 - 10 = 0 \\ |
| 25 | +\text{Effective Publisher APY} \quad{r^p_p} &= \frac{R^p_p}{S^p_p} = \frac{10}{100} = 10\% \\ |
| 26 | +\text{Effective Delegator APY} \quad{r^d_p} &= \frac{R^d_p}{S^d_p} = \frac{0}{0} = 0\% \\ |
27 | 27 | \end{aligned}
|
28 | 28 | $$
|
29 | 29 |
|
|
37 | 37 | {S^d_p} &= 100 \\
|
38 | 38 | {S_p} &= {S^p_p} + {S^d_p} = 100 + 100 = 200 \\
|
39 | 39 | {C}_p &= 500 \\
|
40 |
| -\text{Total Amount eligible for Reward} \quad{E_p} &= min({S}_p, {C}_p) = min(500, 200) = 200 \\ |
41 |
| -\text{Reward Rate (Yearly)} \quad{r} &= 10\% \\ |
42 |
| -
|
43 |
| -\text{Total Reward for one year} \quad{R_p} &= {r} \times {E_p} = 10\% \times 200 = 20 \\ |
44 |
| -\text{Publisher Reward} \quad{R^p_p} &= {r} \times min({S^p_p}, {C}_p) = 10\% \times 100 = 10 \\ |
45 |
| -\text{Delegator Reward} \quad{R^d_p} &= {R_p} - {R^p_p} = 20 - 10 = 10 \\ |
46 |
| -\text{Effective Publisher Yield Rate} \quad{r^p_p} &= \frac{R^p_p}{S^p_p} = \frac{10}{100} = 10\% \\ |
47 |
| -\text{Effective Delegator Yield Rate} \quad{r^d_p} &= \frac{R^d_p}{S^d_p} = \frac{10}{100} = 10\% \\ |
| 40 | +\text{Total Amount eligible for Rewards} \quad{E_p} &= min({S}_p, {C}_p) = min(500, 200) = 200 \\ |
| 41 | +\text{Annual Rate of Rewards} \quad{r} &= 10\% \\ |
| 42 | +
|
| 43 | +\text{Total Rewards for one year} \quad{R_p} &= {r} \times {E_p} = 10\% \times 200 = 20 \\ |
| 44 | +\text{Publisher Rewards} \quad{R^p_p} &= {r} \times min({S^p_p}, {C}_p) = 10\% \times 100 = 10 \\ |
| 45 | +\text{Delegator Rewards} \quad{R^d_p} &= {R_p} - {R^p_p} = 20 - 10 = 10 \\ |
| 46 | +\text{Effective Publisher APY} \quad{r^p_p} &= \frac{R^p_p}{S^p_p} = \frac{10}{100} = 10\% \\ |
| 47 | +\text{Effective Delegator APY} \quad{r^d_p} &= \frac{R^d_p}{S^d_p} = \frac{10}{100} = 10\% \\ |
48 | 48 | \end{aligned}
|
49 | 49 | $$
|
50 | 50 |
|
|
58 | 58 | {S^d_p} &= 300 \\
|
59 | 59 | {S_p} &= {S^p_p} + {S^d_p} = 300 + 300 = 600 \\
|
60 | 60 | {C}_p &= 500 \\
|
61 |
| -\text{Total Amount eligible for Reward} \quad{E_p} &= min({S}_p, {C}_p) = min(500, 600) = 500 \\ |
62 |
| -\text{Reward Rate (Yearly)} \quad{r} &= 10\% \\ |
63 |
| -
|
64 |
| -\text{Total Reward for one year} \quad{R_p} &= {r} \times {E_p} = 10\% \times 500 = 50 \\ |
65 |
| -\text{Publisher Reward} \quad{R^p_p} &= {r} \times min({S^p_p}, {C}_p) = 10\% \times 300 = 30 \\ |
66 |
| -\text{Delegator Reward} \quad{R^d_p} &= {R_p} - {R^p_p} = 50 - 30 = 20 \\ |
67 |
| -\text{Effective Publisher Yield Rate} \quad{r^p_p} &= \frac{R^p_p}{S^p_p} = \frac{30}{300} = 10\% \\ |
68 |
| -\text{Effective Delegator Yield Rate} \quad{r^d_p} &= \frac{R^d_p}{S^d_p} = \frac{20}{300} = 6.67\% \\ |
| 61 | +\text{Total Amount eligible for Rewards} \quad{E_p} &= min({S}_p, {C}_p) = min(500, 600) = 500 \\ |
| 62 | +\text{Annual Rate of Rewards} \quad{r} &= 10\% \\ |
| 63 | +
|
| 64 | +\text{Total Rewards for one year} \quad{R_p} &= {r} \times {E_p} = 10\% \times 500 = 50 \\ |
| 65 | +\text{Publisher Rewards} \quad{R^p_p} &= {r} \times min({S^p_p}, {C}_p) = 10\% \times 300 = 30 \\ |
| 66 | +\text{Delegator Rewards} \quad{R^d_p} &= {R_p} - {R^p_p} = 50 - 30 = 20 \\ |
| 67 | +\text{Effective Publisher APY} \quad{r^p_p} &= \frac{R^p_p}{S^p_p} = \frac{30}{300} = 10\% \\ |
| 68 | +\text{Effective Delegator APY} \quad{r^d_p} &= \frac{R^d_p}{S^d_p} = \frac{20}{300} = 6.67\% \\ |
69 | 69 | \end{aligned}
|
70 | 70 | $$
|
71 | 71 |
|
|
87 | 87 | \quad{R^p_p} &= {r} \times min({S^p_p}, {C}_p) = 10\% \times 200 = 20 \\
|
88 | 88 | \quad{R^d_p} &= {R_p} - {R^p_p} = 50 - 20 = 30 \\
|
89 | 89 | \text{Fee paid by Delegator} \quad{F^d_p} &= {f} \times {R^d_p} = 2\% \times 30 = 0.6 \\
|
90 |
| -\text{Final Delegator Reward} \quad{R^d_p} &= {R^d_p} - {F^d_p} = 30 - 0.6 = 29.4 \\ |
91 |
| -\text{Total Publisher Reward} \quad{R^p_p} &= {R^p_p} + {F^d_p} = 20 + 0.6 = 20.6 \\ |
92 |
| -\text{Effective Publisher Yield Rate} \quad{r^p_p} &= \frac{R^p_p}{S^p_p} = \frac{20.6}{200} = 10.3\% \\ |
93 |
| -\text{Effective Delegator Yield Rate} \quad{r^d_p} &= \frac{R^d_p}{S^d_p} = \frac{29.4}{300} = 9.8\% \\ |
| 90 | +\text{Final Delegator Rewards} \quad{R^d_p} &= {R^d_p} - {F^d_p} = 30 - 0.6 = 29.4 \\ |
| 91 | +\text{Total Publisher Rewards} \quad{R^p_p} &= {R^p_p} + {F^d_p} = 20 + 0.6 = 20.6 \\ |
| 92 | +\text{Effective Publisher APY} \quad{r^p_p} &= \frac{R^p_p}{S^p_p} = \frac{20.6}{200} = 10.3\% \\ |
| 93 | +\text{Effective Delegator APY} \quad{r^d_p} &= \frac{R^d_p}{S^d_p} = \frac{29.4}{300} = 9.8\% \\ |
94 | 94 | \end{aligned}
|
95 | 95 | $$
|
96 | 96 |
|
|
0 commit comments