@@ -354,7 +354,7 @@ def interpolated_on_grid(self, n=None):
354
354
ys : 1D numpy.ndarray
355
355
interpolated_on_grid : 2D numpy.ndarray
356
356
"""
357
- ip = self .interpolate (scaled = True )
357
+ ip = self .interpolator (scaled = True )
358
358
if n is None :
359
359
# Calculate how many grid points are needed.
360
360
# factor from A=√3/4 * a² (equilateral triangle)
@@ -384,7 +384,7 @@ def _data_interp(self):
384
384
if self .pending_points :
385
385
points = list (self .pending_points )
386
386
if self .bounds_are_done :
387
- ip = self .interpolate (scaled = True )
387
+ ip = self .interpolator (scaled = True )
388
388
values = ip (self ._scale (points ))
389
389
else :
390
390
# Without the bounds the interpolation cannot be done properly,
@@ -403,15 +403,15 @@ def _data_combined(self):
403
403
return points_combined , values_combined
404
404
405
405
def ip (self ):
406
- """Deprecated, use `self.interpolate (scaled=True)`"""
406
+ """Deprecated, use `self.interpolator (scaled=True)`"""
407
407
warnings .warn (
408
- "`learner.ip()` is deprecated, use `learner.interpolate (scaled=True)`."
408
+ "`learner.ip()` is deprecated, use `learner.interpolator (scaled=True)`."
409
409
" This will be removed in v1.0." ,
410
410
DeprecationWarning ,
411
411
)
412
- return self .interpolate (scaled = True )
412
+ return self .interpolator (scaled = True )
413
413
414
- def interpolate (self , * , scaled = False ):
414
+ def interpolator (self , * , scaled = False ):
415
415
"""A `scipy.interpolate.LinearNDInterpolator` instance
416
416
containing the learner's data.
417
417
@@ -541,7 +541,7 @@ def ask(self, n, tell_pending=True):
541
541
def loss (self , real = True ):
542
542
if not self .bounds_are_done :
543
543
return np .inf
544
- ip = self .interpolate (scaled = True ) if real else self ._interpolate_combined ()
544
+ ip = self .interpolator (scaled = True ) if real else self ._interpolate_combined ()
545
545
losses = self .loss_per_triangle (ip )
546
546
return losses .max ()
547
547
@@ -586,7 +586,7 @@ def plot(self, n=None, tri_alpha=0):
586
586
lbrt = x [0 ], y [0 ], x [1 ], y [1 ]
587
587
588
588
if len (self .data ) >= 4 :
589
- ip = self .interpolate (scaled = True )
589
+ ip = self .interpolator (scaled = True )
590
590
x , y , z = self .interpolated_on_grid (n )
591
591
592
592
if self .vdim > 1 :
0 commit comments