@@ -139,14 +139,14 @@ def add_loss_to_params(learner_type, existing_params):
139
139
return [dict (** existing_params , ** lp ) for lp in loss_params ]
140
140
141
141
142
- def run_with (* learner_types ):
142
+ def run_with (* learner_types , with_all_loss_functions = True ):
143
143
pars = []
144
144
for l in learner_types :
145
145
has_marker = isinstance (l , tuple )
146
146
if has_marker :
147
147
marker , l = l
148
148
for f , k in learner_function_combos [l ]:
149
- ks = add_loss_to_params (l , k )
149
+ ks = add_loss_to_params (l , k ) if with_all_loss_functions else [ k ]
150
150
for k in ks :
151
151
# Check if learner was marked with our `xfail` decorator
152
152
# XXX: doesn't work when feeding kwargs to xfail.
@@ -402,7 +402,8 @@ def test_learner_performance_is_invariant_under_scaling(learner_type, f, learner
402
402
assert abs (learner .loss () - control .loss ()) / learner .loss () < 1e-11
403
403
404
404
405
- @run_with (Learner1D , Learner2D , LearnerND , AverageLearner )
405
+ @run_with (Learner1D , Learner2D , LearnerND , AverageLearner ,
406
+ with_all_loss_functions = False )
406
407
def test_balancing_learner (learner_type , f , learner_kwargs ):
407
408
"""Test if the BalancingLearner works with the different types of learners."""
408
409
learners = [learner_type (generate_random_parametrization (f ), ** learner_kwargs )
@@ -436,7 +437,8 @@ def test_balancing_learner(learner_type, f, learner_kwargs):
436
437
437
438
438
439
@run_with (Learner1D , Learner2D , LearnerND , AverageLearner ,
439
- maybe_skip (SKOptLearner ), IntegratorLearner )
440
+ maybe_skip (SKOptLearner ), IntegratorLearner ,
441
+ with_all_loss_functions = False )
440
442
def test_saving (learner_type , f , learner_kwargs ):
441
443
f = generate_random_parametrization (f )
442
444
learner = learner_type (f , ** learner_kwargs )
@@ -457,7 +459,8 @@ def test_saving(learner_type, f, learner_kwargs):
457
459
458
460
459
461
@run_with (Learner1D , Learner2D , LearnerND , AverageLearner ,
460
- maybe_skip (SKOptLearner ), IntegratorLearner )
462
+ maybe_skip (SKOptLearner ), IntegratorLearner ,
463
+ with_all_loss_functions = False )
461
464
def test_saving_of_balancing_learner (learner_type , f , learner_kwargs ):
462
465
f = generate_random_parametrization (f )
463
466
learner = BalancingLearner ([learner_type (f , ** learner_kwargs )])
@@ -483,7 +486,8 @@ def fname(learner):
483
486
484
487
485
488
@run_with (Learner1D , Learner2D , LearnerND , AverageLearner ,
486
- maybe_skip (SKOptLearner ), IntegratorLearner )
489
+ maybe_skip (SKOptLearner ), IntegratorLearner ,
490
+ with_all_loss_functions = False )
487
491
def test_saving_with_datasaver (learner_type , f , learner_kwargs ):
488
492
f = generate_random_parametrization (f )
489
493
g = lambda x : {'y' : f (x ), 't' : random .random ()}
0 commit comments