@@ -52,14 +52,13 @@ def two_dec(num: float) -> str:
5252
5353
5454# ############ Table data formatted as an iterable of iterable fields ############
55-
56- EXAMPLE_ITERABLE_DATA = [['Shanghai' , 'Shanghai' , 'China' , 'Asia' , 24183300 , 6340.5 ],
57- ['Beijing' , 'Hebei' , 'China' , 'Asia' , 20794000 , 1749.57 ],
58- ['Karachi' , 'Sindh' , 'Pakistan' , 'Asia' , 14910352 , 615.58 ],
59- ['Shenzen' , 'Guangdong' , 'China' , 'Asia' , 13723000 , 1493.32 ],
60- ['Guangzho' , 'Guangdong' , 'China' , 'Asia' , 13081000 , 1347.81 ],
61- ['Mumbai' , 'Maharashtra' , 'India' , 'Asia' , 12442373 , 465.78 ],
62- ['Istanbul' , 'Istanbul' , 'Turkey' , 'Eurasia' , 12661000 , 620.29 ],
55+ EXAMPLE_ITERABLE_DATA = [['Shanghai (上海)' , 'Shanghai' , 'China' , 'Asia' , 24183300 , 6340.5 ],
56+ ['Beijing (北京市)' , 'Hebei' , 'China' , 'Asia' , 20794000 , 1749.57 ],
57+ ['Karachi (کراچی)' , 'Sindh' , 'Pakistan' , 'Asia' , 14910352 , 615.58 ],
58+ ['Shenzen (深圳市)' , 'Guangdong' , 'China' , 'Asia' , 13723000 , 1493.32 ],
59+ ['Guangzho (广州市)' , 'Guangdong' , 'China' , 'Asia' , 13081000 , 1347.81 ],
60+ ['Mumbai (बॉम्बे हिंदी)' , 'Maharashtra' , 'India' , 'Asia' , 12442373 , 465.78 ],
61+ ['Istanbul (İstanbuld)' , 'Istanbul' , 'Turkey' , 'Eurasia' , 12661000 , 620.29 ],
6362 ]
6463
6564# Calculate population density
@@ -68,7 +67,7 @@ def two_dec(num: float) -> str:
6867
6968
7069# # Column headers plus optional formatting info for each column
71- columns = [tf .Column ('City' , header_halign = tf .ColumnAlignment .AlignCenter ),
70+ columns = [tf .Column ('City' , width = 11 , header_halign = tf .ColumnAlignment .AlignCenter ),
7271 tf .Column ('Province' , header_halign = tf .ColumnAlignment .AlignCenter ),
7372 'Country' , # NOTE: If you don't need any special effects, you can just pass a string
7473 tf .Column ('Continent' , cell_halign = tf .ColumnAlignment .AlignCenter ),
@@ -109,14 +108,10 @@ def pop_density(data: CityInfo):
109108 return ''
110109
111110
112- EXAMPLE_OBJECT_DATA = [CityInfo ('Shanghai' , 'Shanghai' , 'China' , 'Asia' , 24183300 , 6340.5 ),
113- CityInfo ('Beijing' , 'Hebei' , 'China' , 'Asia' , 20794000 , 1749.57 ),
114- CityInfo ('Karachi' , 'Sindh' , 'Pakistan' , 'Asia' , 14910352 , 615.58 ),
115- CityInfo ('Shenzen' , 'Guangdong' , 'China' , 'Asia' , 13723000 , 1493.32 ),
116- CityInfo ('Guangzho' , 'Guangdong' , 'China' , 'Asia' , 13081000 , 1347.81 ),
117- CityInfo ('Mumbai' , 'Maharashtra' , 'India' , 'Asia' , 12442373 , 465.78 ),
118- CityInfo ('Istanbul' , 'Istanbul' , 'Turkey' , 'Eurasia' , 12661000 , 620.29 ),
119- ]
111+ # Convert the Iterable of Iterables data to an Iterable of non-iterable objects for demonstration purposes
112+ EXAMPLE_OBJECT_DATA = []
113+ for city in EXAMPLE_ITERABLE_DATA :
114+ EXAMPLE_OBJECT_DATA .append (CityInfo (city [0 ], city [1 ], city [2 ], city [3 ], city [4 ], city [5 ]))
120115
121116# If table entries are python objects, all columns must be defined with the object attribute to query for each field
122117# - attributes can be fields or functions. If a function is provided, the formatter will automatically call
0 commit comments