@@ -861,12 +861,12 @@ is_error(double x, int raise_edom)
861861           should return a zero on underflow, and +- HUGE_VAL on 
862862           overflow, so testing the result for zero suffices to 
863863           distinguish the cases). 
864-            
864+ 
865865           On some platforms (Ubuntu/ia64) it seems that errno can be 
866866           set to ERANGE for subnormal results that do *not* underflow 
867867           to zero.  So to be safe, we'll ignore ERANGE whenever the 
868868           function result is less than 1.5 in absolute value. 
869-            
869+ 
870870           bpo-46018: Changed to 1.5 to ensure underflows in expm1() 
871871           are correctly detected, since the function may underflow 
872872           toward -1.0 rather than 0.0. */ 
@@ -1574,7 +1574,6 @@ of correctness (using Lean) of an equivalent recursive algorithm can be found
15741574
15751575    https://github.com/mdickinson/snippets/blob/master/proofs/isqrt/src/isqrt.lean 
15761576
1577- 
15781577Here's Python code equivalent to the C implementation below: 
15791578
15801579    def isqrt(n): 
@@ -1599,7 +1598,6 @@ Here's Python code equivalent to the C implementation below:
15991598
16001599        return a - (a*a > n) 
16011600
1602- 
16031601Sketch of proof of correctness 
16041602------------------------------ 
16051603
@@ -3213,7 +3211,6 @@ math_isnan_impl(PyObject *module, double x)
32133211    return  PyBool_FromLong ((long )isnan (x ));
32143212}
32153213
3216- 
32173214/*[clinic input] 
32183215math.isinf 
32193216
@@ -3230,7 +3227,6 @@ math_isinf_impl(PyObject *module, double x)
32303227    return  PyBool_FromLong ((long )isinf (x ));
32313228}
32323229
3233- 
32343230/*[clinic input] 
32353231math.isclose -> bool 
32363232
@@ -3712,7 +3708,7 @@ perm_comb_small(unsigned long long n, unsigned long long k, int iscomb)
37123708    }
37133709
37143710    /* For larger n use recursive formulas: 
3715-        
3711+ 
37163712         P(n, k) = P(n, j) * P(n-j, k-j) 
37173713         C(n, k) = C(n, j) * C(n-j, k-j) // C(k, j) */ 
37183714    unsigned long long  j  =  k  / 2 ;
0 commit comments